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Lab 9: Ballistic Pendulum 

Experiment for Physics 225 Lab at CSU Fullerton. 

What You Need to Know 

Introduction: 

The ballistic pendulum is a pendulum with a device on the bottom end that “catches” a projectile from some 
type of launcher, and then converts the kinetic energy transferred to the catcher at the bottom of the swing, to 
gravitational potential energy as it swings up to a maximum height.  Since the collision is inelastic, not all of the 
kinetic energy of the projectile before the collision actually gets transferred to the catcher plus projectile after 
the collision.  By measuring the maximum vertical height that the projectile plus catcher swing up to, one can 
apply energy and momentum conservation to determine the initial velocity of the projectile as it leaves the 
launcher.  The projectile could be a golf ball, baseball, tennis ball, soccer ball, paint ball, arrow, rock, bullet, 
cannon ball, steel ball bearing (as in this lab), or other object that one would like to know the speed of without 
having to measure its time of passage over a fixed distance.  Knowing the launch velocity of a projectile enables 
one to calculate its kinetic energy, and its range with a simple formula, assuming the effects of air resistance are 
negligible.   

The ballistic pendulum was invented in 1742 by English mathematician Benjamin Robins (1707–1751), and 
published in his book New Principles of Gunnery, which revolutionized the science of ballistics, as it provided the 
first way to accurately measure the velocity of a bullet.  Other contemporaries used his method to determine 
the velocity of cannon balls of from 1-3 lbs.1   

Figure 1 shows a schematic idealization of a ballistic pendulum.  As can be seen from the Figure 1, there are 3 
phases of the motion that allow determination of the initial velocity of the projectile immediately after its 

launch, 0v .  The three phases are 1.)  after the projectile launch and before the collision (left), 2.) immediately 

after the collision and before the catcher with projectile moves appreciably (center), and 3.) after the collision 
at the top of the pendulum swing  (right). 

Summary:   

Today’s experiment has two major parts:   

                                                      

1 https://en.wikipedia.org/wiki/Ballistic_pendulum  accessed 2/13/2019. 

Figure 1 - Simple single rod ballistic pendulum 
schematic showing the 3 phases of the 
motion. 

https://en.wikipedia.org/wiki/Benjamin_Robins
https://en.wikipedia.org/wiki/Ballistic_pendulum
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1. In the first part you will determine the initial velocity 0v  of a steel ball immediately after it leaves a 

spring loaded launcher.   
This will be done by firing the projectile at the catcher and measuring the maximum horizontal distance 

x that the catcher plus steel ball is displaced from the bottom to the top of its swing.  The procedure 
will be repeated at least 6 times to get a good average, since there will be some variation in the launch 
velocity from shot to shot.  Momentum conservation during the collision and energy conservation after 

the collision will be applied to determine a formula for the initial velocity 0v .  It will be necessary to 

measure the length l of the center to center distance between the pivot points on the swing arms, the 

mass of the steel ball m, and the mass of the catcher M.  The mass of an individual swing arm am , should 

also be measured and recorded, although it is designed to be much smaller than the mass of the ball and 
catcher. 

2. In the second part of the experiment, you will use the value of 0v  determined in the first part above, 

combined with a careful measurement of the height of the bottom of the steel ball above the floor (when 
mounted on the launcher rod) H, to predict the horizontal distance D from the  vertical centerline of the 
steel ball to where it hits the floor (see Figure 7).   
A piece of fine cell graph paper will be taped to the floor (or rubber pad if available) with a line drawn 
on the paper labeled with the predicted distance D.  Carbon paper oriented with the carbon face down 
will be placed on top of the paper, so that when the launched ball strikes the carbon paper on the floor, 
it will leave a black impression mark on the graph paper where it landed.  6 launches of the steel ball 
onto the paper taped to the floor should be made.  The mean of the actual experimental distances 
(determined by measuring the distance from the predicted reference line to the black carbon marks on 
the paper) and their standard deviation will be determined and compared to the theoretical predicted 
distance. 

The graph paper with the carbon impressions and labeled reference distance on it should be turned in with the 
lab report, as that is primary data (if your instructor requires electronic submission of the lab report, take a good 
quality photo of your paper with the carbon impression and paste that in your Word document).  A single lab 
report with your measurements, sample calculations, answers to questions, and short conclusion should be 
turned in for each station.  Be sure to show sample calculations with the data from one of your trials for both 
parts of the experiment. 
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What You Need to Do 

Part 1: Determining the initial launch velocity 𝒗𝟎 of the projectile 

Theoretical Analysis for Determination of 𝒗𝟎. 

A) The ballistic pendulum setup you’ll be using is shown in Figure 2. Start by analyzing it to find the 
initial velocity of  the ball 𝑣0 in question 1. 

Question 1:   

Show the steps in deriving the following equation for the initial velocity of the ball 𝑣0 in relation to the height 
that the ball swings up to, ℎ, the mass of the ball 𝑚, the mass of the catcher 𝑀, and the local gravitational 
constant 𝑔. 

𝑣0 =
(𝑚 + 𝑀)

𝑚
√2𝑔ℎ 

 

For details or assistance in deriving this equation see Appendix A, or your instructor may wish to walk you 
through it.  

B) To assist in this experiment an excel spreadsheet is provided that utilizes the above equation with 
values that you will measure. Open the Ballistic Pendulum Calculations spreadsheet and check out 
the equations in cells G15-G20 and H15-H20 to verify you understand it’s the equation found in 
question 1. 

C) Note that the height h is a bit tricky to measure, but can be found from the horizontal motion of 
the arm, which is derived in Appendix B to be approximately 

ℎ ≅
Δ𝑥2

2𝑙
 

where Δ𝑥 is the horizontal displacement of the catcher, and 𝑙 is the length of the swing arms. 
Locate cells E15-E20 and verify you understand its utilizing this equation. 

 

Figure 2 – multistage problem for ballistic pendulum 

𝑙 

ℎ 

Δ𝑥 
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Experimental procedure for determination of v0   

Now you’ll find 𝑣0 experimentally by taking the data needed for the equation in question 1. 

D) Prepare to Launch the ball. 

a. Using the white plunger knob on the end of the launcher, pull it back so that it compresses 
the spring and holds it there, as shown in Figure 4.   

b. The steel ball has a hole thru it that allows it to mount on the end of the launcher rod.  
Place the steel ball on the launching rod and make sure the ball is put all the way onto the 
rod so that it contacts the larger diameter portion of the rod.   

Note: It must be in this position when the launching ring is pulled up to avoid large 
differences. 

c. Use a pencil, pen, or lightweight ruler to gently nudge the slider so that it contacts the small 
vertical rod underneath the catcher and record the initial reading xi of one end of the slider 
which is on the yellow measuring tape attached to the top of the measuring bar, as shown 
in Figure 5.   

d. Make sure you measure the initial position of the slider to an accuracy of less than 1mm 
(the scale readings are only 1mm apart, so estimate to the nearest 0.5mm). 

Figure 3 - (left) Photo of ballistic pendulum apparatus used in this lab.  The slider is shown directly 
underneath the catcher.  (right) Schematic diagram of ballistic pendulum. 

Figure 4 - Photo of spring launcher in 
the cocked position with steel ball 
mounted on the end.  Pull the white 
knob to the right to cock the spring.  
Pulling up the ring on the left of the top 
rod launches the projectile. 

Figure 5 - Close up of catcher, slider, and 
measuring bar.  Take measurements from the 
end of the slider that is farthest from the rod on 
the bottom of the catcher. 𝑥𝑖 = 7.3𝑐𝑚 shown. 
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e. Enter this value in the labeled and highlighted column in the ballistic pendulum spreadsheet 
provided.   

E) Launch the projectile  

f. Before launching, insure that the ball is all the way back on the launching rod and that the 
short rod on the bottom of the catcher is in contact with the slider, as shown in Figure 5. 
The measurements of the initial and final positions of the slider are the largest sources of 
difference in the experiment, and it is essential that care be taken in determining them. 

g. Hold the apparatus down firmly with one hand to keep it from moving while the launching 
ring is pulled straight up, in order to prevent the catcher from swinging due to pulling on 
the launching ring. 

h. To launch pull straight up on the steel ring, taking care not to disturb the catcher or move 
the slider during the process.   

F) Record the final position xf of the slider on the same end you measured the initial position to the 
nearest 0.5mm.  Enter this value in the labeled and highlighted column of the ballistic pendulum 
spreadsheet, shown in Figure 6. 

G) Repeat the previous steps 5 more times so that you have 6 total “good” values of the horizontal 

displacement 𝛥𝑥 = |𝑥𝑓 − 𝑥𝑖|.  The values should not deviate by more than 5-10%  from the 

average of all 6 values (hopefully less).  You can check this by entering the values in the 
spreadsheet, which calculates the mean and standard deviation of the 6 trials at the bottom of 
each column.     

H) Measure the center to center distance between the pivot points of any one metal strip, which is 
the swing arm length 𝑙. Enter the swing arm length 𝑙 into the labeled cell in the spreadsheet.   

i. This can be done when the swing arms are mounted on the catcher, taking care to note 
where the center of the pivoting locations are.  (Note that 𝒍 is NOT the end to end length of 
the swing arms!).  

Figure 6 - Ballistic pendulum spreadsheet calculations based on sample data.  Enter your 
numbers in the highlighted cells only, which will be empty when you open the spreadsheet. 
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I) Use a scale in lab to measure the masses of the steel ball m, the catcher M, and one of the swing 
arms ma 

j. Carefully remove the ball catcher apparatus from the swing arms. 

k. Carefully remove the metal strip swing arms from the ball catcher and apparatus, 
supporting it with one hand underneath while taking them off the catcher.  The metal strip 
swing arms can bend and break easily, so be careful. 

l. LEAVE THE SWING ARMS OFF THE CATCHER AND APPARATUS FOR NOW SINCE THEY MUST 
BE OUT OF THE WAY FOR THE NEXT PART OF THE EXPERIMENT. 

J)  Observe that the calculations for the initial projectile velocity vo are performed in the provided 
ballistic pendulum spreadsheet once you enter all 6 values of the initial and final positions of the 
slider, the length of the slider arms, and the masses of the catcher, projectile and swing arm.   

The spreadsheet calculates all the important relevant quantities, the swing height h, the difference 

term lh 2 , the catcher plus projectile velocity V after the collision, the fractional amount of kinetic 

energy lost due to the inelastic collision, but most importantly, the mean and standard deviation of 
the initial velocity of the projectile v0.  The initial projectile launch velocity is the only input from 
this section to the next part of the experiment on determining the projectile range.   

K) Note the initial projectile launch velocity that is calculated from the equations in the excel sheet. It 
will be used in the next section. 
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Part 2: Determining the horizontal range D of the projectile from the initial velocity 
𝒗𝟎. 

If the catcher weren’t there, how far horizontally would the ball go before hitting the ground? 

Theoretical Analysis for Determination of 𝑫, the range of the projectile. 

 

Question 2:    

Show the steps in deriving the following equation for the distance the ball will travel 𝐷, in relation to the initial 
velocity of the ball 𝑣0, and the height from the bottom of the ball to the floor 𝐻, and the local gravitational 
constant 𝑔. 

𝐷 = 𝑣0√2𝐻 𝑔⁄  

 

See Appendix C for assistance in this calculation and explanation of what the height 𝐻 is. 

A) Again this is calculated for you in the spreadsheet based off your measurements in part 1. Take a look 
at cells J15-J20 to verify this equation is in use. 

 

Experimental procedure for Measuring D, the range of the projectile 

Now take experimental measurements to verify the above theory for calculating 𝐷. We’ll utilize the prediction 
for 𝐷 in our measurements. 

A) Take an accurate measurement of the bottom of the steel ball to the floor. 

a. This should be done to an accuracy of no worse than 0.5 cm.   

b. Use a 2 meter stick suspended vertically and plastic ruler to measure the distance to the 
floor from the bottom of the steel ball when it is mounted on the launcher, with the 

Figure 7 – Diagram of the ball launch off the table. 
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launcher not cocked (this is the position that the ball is released from with horizontal 
velocity 𝑣0 as shown in Figure 8).   

c. Put a piece of masking tape on the floor with the edge against the back of the 2 meter stick 
where it contacts the floor.   

d. Enter the value of H that you just measured in the labeled cell of the ballistic pendulum 
spreadsheet.  The spreadsheet will now calculate the predicted value of D for each trial and 
the average and standard deviation of these values. 

L) Now locate the average predicted value of D from the spreadsheet calculation.   

e. Use a 2 meter stick to measure from the tape on the floor in part A) to the predicted 
distance D and put another piece of masking tape on the floor with its edge where the 
predicted distance D is.   

Figure 8 - Measuring method to determine H using a 2 
meter stick and small ruler placed under the steel ball 
and held horizontally.  The other end of the vertical 2 
meter stick is on the ground. 

Figure 9 - Setup showing how to measure the horizontal reference distance Dr using masking tape on 
the floor.  Fine cell graph paper is taped on the rubber mat in a cardboard box lid.  Carbon paper placed 
face down on the graph paper leaves black impression marks where the steel ball lands. 
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f. The distance between the 2 nearest edges of the pieces of tape on the floor should be the 
average predicted distance D, (see Figure 9).  This is called the reference mark distance Dr in 
the spreadsheet.   

g. Take a piece of mm cell graph paper and draw a horizontal line on it near the bottom of the 
paper when the paper is oriented with the long side vertical.  Label this line with the 
average predicted distance on it.   

h. Match up the line on the graph paper with the line on the tape on the floor, and tape the 
graph paper down, face up, to the rubber sound deadening mat in the box.  That way the 
graph paper will have a calibrated reference line on it at the predicted distance D away.  
(see Figure 9) 

M) Take one or two trial shots with just the graph paper to make sure that the launching apparatus is 
lined up and that the ball lands within about 10-15 cm of the predicted line and not too far off the 
center line of the short edge of the graph paper.  If not, double check your measurements in steps 
A),B) and move the graph paper as necessary.  Be sure to label a reference line on the graph paper 
where it lines up with the reference distance Dr . 

N) Lay carbon paper on top of the graph paper, black carbon face down so that when the steel ball 
lands on the carbon paper, it will leave a black impression mark on the graph paper.   

 
DO NOT TAPE THE CARBON PAPER, the graph paper should be fixed down but the carbon paper can 
move freely and still do it’s job. 

O) Now make 6 shots with the carbon paper face down on top of the graph paper.   

i. After each shot life the carbon paper and label the mark with the corresponding trial 
number as shown in Figure 10. 

P) Lift the carbon paper to ensure that the steel ball left at least 6 good marks on the graph paper.   

Q) When you are done with launching the steel ball onto the floor, carefully remount the catcher and 
swing arms onto the apparatus 

R) Take your graph paper off of the box and measure the distances of the black carbon round 
impressions from the predicted value of D line that was drawn on the paper in part iii.).   

j. See the example in Figure 10. 
k. So that you do not make a mistake, for each impression enter the distance from the predicted 

reference line to the darkest point of the black impression, call them 𝛥𝐷𝑚.   
l. Make this distance negative if it is less than D and positive if it is farther than D.  Enter the 

actual reference distance Dr labeled on the graph paper in the cell on your spreadsheet and 

these 6 values of mD  (in cm!) in the labeled column of the spreadsheet.   
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m. The spreadsheet will calculate the corresponding measured value of Dm
2 for each trial (in 

meters), the mean and standard deviation of the 6 measured values and the percent 
difference3 between the average experimental and average theoretical values. 

S) Prepare to submit your excel table to your instructor. 

n. If using word copy the table and paste it as an image (through the right click menu). DO NOT 
just use copy from Excel and paste into Word, the spreadsheet formatting will be a mess in 
the word document. 

T) Prepare to submit your graph paper with measurements. 

o. Since this is primary data, make sure to include your graph paper with the labeled average 
predicted line, and the average measured line drawn on it in your lab report.   

p. If your instructor requires electronic submission of your lab report, include a good quality 
photo of the graph paper with the black impressions from the impact of the steel ball on it 
pasted in your Word document. (use your phone camera). 

U)  Take a few minutes to examine all the columns and calculations on the spreadsheet and 
understand what each calculation is doing.   

                                                      

2 𝐷𝑚 = (𝐷𝑟 + 𝛥𝐷𝑚) 

3 % 𝐸𝑟𝑟𝑜𝑟 =
|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|

|𝑎𝑣𝑒𝑟𝑎𝑔𝑒|
× 100.  

Figure 10 - Steel ball impact data showing reference mark labeling and example of distance   from 
reference mark to carbon paper black impression.  Enter these numbers for each trial shot in the 
spreadsheet column labeled 𝛥𝐷𝑚  , example 𝛥𝐷1 shown.  𝐷𝑟 =131 cm in this example.   
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q. You should take one row of the spreadsheet and perform sample calculations of each quantity 
in that row in order to make sure that you understand how to perform the calculations and 
that the spreadsheet calculations are correct.   

r. Refer to eqns. 10-23 as needed to perform the calculations.   
s. Include the sample calculations in your report in a section labeled Sample Calculations. 

V)  The results of your experiment can be summarized by the average predicted value of D plus or 
minus 2 standard deviations4, and the average measured value of Dm plus or minus 2 standard 
devations.   

W) Calculate the percent difference of the two values in your conclusion or summary of the 
experiment.   

X) Please make sure the lab is now setup as it was when you entered the room before leaving. 

Question 3:   

Do the predicted and measured average values overlap within the uncertainty values?  Answer with specific 
examples from your data. 

 

 

                                                      

4 It has become more common to report uncertainty values corresponding to 2 standard deviations, instead of 1 standard deviation 
as done previously. 
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Analysis Questions 

The following checkpoints may be assigned as questions instead at your instructors discretion. Check with them 
if they’d like you to submit answers to any of them for grading. 

These could also be answered at home in preparation for the lab.   

Checkpoint 1:   

What is being ignored in applying momentum conservation to the collision between the projectile and 
catcher?  (hint; what is the condition for momentum to be conserved?)  Is this condition satisfied and why or 
why not?   

Checkpoint 2:   

What if any differences are introduced by assuming the momentum during the collision is conserved?   

Checkpoint 3:   

Consider the swing arms in this application: 

What is the effect of the movement of the swing arms?  How should this be accounted for? (they contribute 
differently to the momentum of the catcher, its kinetic energy, and its gravitational potential energy).   

Does including the effects of the swing arms increase or decrease the predicted distance?   

Checkpoint 4:   

What are the effects of the friction, momentum, and kinetic energy of the slider?   

Checkpoint 5:   

What are the effects of friction in the 8 swing arm pivots due to the rotation?   

Checkpoint 6:  

Can you find a rough estimate for the collision time assuming the catcher does not move more than 1 mm 
during the collision?   

How large is the correction term and what is the size of the difference due to making the approximation of 

neglecting lh 2  in eqn. 22? 

 

 

 

KW  3/20/19 rev. 2023 
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Appendix  A:  

Theory for determination of v0.   

In the simple single rod ballistic pendulum of figure 1, the catcher with ball rotates about the top pivot point, 
thus the initial kinetic energy involves the moment of inertia of the catcher (with projectile) and rod about the 
pivot point.  To avoid this complication and eliminate the rotation of the catcher with projectile, parallelogram 
linkage is used, as shown in Figure 11.  The modification of the ballistic pendulum using parallelogram linkage 
is called Ackley’s ballistic pendulum and was first described in 19621.  As can be seen from Figure 11, the 
parallelogram linkage prevents the catcher from rotating (like a glider on a swing set), thus eliminating angular 
rotation and catcher moment of inertia effects that are not accounted for in the simple formulation.  The 
ballistic pendulum used in this lab uses parallelogram linkage, as shown in Figure 11. 

 

Newton’s 2nd law applied to a system of particles can be written as (consult your textbook or instructor for the 
derivation of this form of Newton’s second law) 

extnet
cm F
td

Pd
,




=      (1.) 

Where cmP


 is the momentum of the center of mass of the particles, and extnetF ,


 is the net external force 

acting on the system of particles (i.e. the vector sum of the external forces acting on the system of particles).  
The internal forces between the particles sum to zero by Newton’s 3rd law of action and reaction, so they do 
not have to be considered in the sum of the forces.   

 

Figure 11 - (Left)  Schematic diagram of ballistic pendulum with parallelogram linkage.  Due to 
the collision of the projectile with the catcher, the catcher with steel ball moves a horizontal 
distance   and up a distance h.  (Right)  Photo of catcher showing the location of the steel ball 
when caught and the yellow slider moved by the rod underneath the catcher during its swing. 
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Equation 1 is a vector equation, so it applies to each vector component on the left and right hand sides of eqn 
1.  For the 2 dimensional motion considered here,  

𝑑𝑃𝑐𝑚,𝑥

𝑑𝑡
= 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑥     (2.) 

𝑑𝑃𝑐𝑚,𝑦

𝑑𝑡
= 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑦     (3.) 

If the net external force is zero in the x direction, 0,, =xextnetF , then from eqn. 2 

𝑑𝑃𝑐𝑚,𝑥

𝑑𝑡
= 0            (4.) 

Eqn. 4 then implies that  

𝑃𝑐𝑚,𝑥 = constant       (5.)  

or equivalently between an initial and final state when there is no net external x force acting,  

𝑃𝑐𝑚,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑐𝑚,𝑥,𝑓𝑖𝑛𝑎𝑙       (6.)  

Since the center of mass momentum �⃗� 𝑐𝑚 equals the total momentum �⃗� 𝑡𝑜𝑡 of the system of particles, eqn. 6 
can be rewritten as  

𝑃𝑡𝑜𝑡,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑡𝑜𝑡,𝑥,𝑓𝑖𝑛𝑎𝑙       (7.)  

Equation 7 is the statement of momentum conservation along the x direction when there is no net external 
force acting along that direction during the motion between the initial and final states chosen.   

 

Similarly, for the case when there is no net external force in the y direction, 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑦 = 0, the same steps and 

reasoning shows that the total momentum in the y direction is also conserved 

𝑃𝑡𝑜𝑡,𝑦,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑡𝑜𝑡,𝑦,𝑓𝑖𝑛𝑎𝑙       (8.) 

For the case at hand, we have two objects in motion, the projectile and the catcher.  Initially the catcher is not 
moving or accelerating, so the sum of the external forces acting on the catcher is initially zero.  During the 
catching process, it is assumed that it takes place so quickly that the motion of the catcher is negligible, so that 
the net external forces in both the x and y directions remain zero during the collision, and we can apply 
momentum conservation along the x direction (the y direction momentum is initially zero and remains zero 
during the collision).   

 

Before the collision, only the projectile of mass m is moving horizontally with velocity v0 . Immediately after 
the collision, both the projectile and catcher of mass M are moving horizontally with the same speed V.  This 
situation is called a completely inelastic collision, or sometimes a perfectly inelastic collision.  Equation 7 can 
be written for this situation as  

𝑃𝑡𝑜𝑡,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑚𝑣0 + 0 = 𝑚𝑉 + 𝑀𝑉 = 𝑃𝑡𝑜𝑡,𝑥,𝑓𝑖𝑛𝑎𝑙    (9.) 

Solving eqn. 9 for the initial projectile velocity v0 in terms of the velocity V of the catcher plus projectile 
immediately after the collision.  

𝑣0 =
(𝑚+𝑀)

𝑚
𝑉       (10.) 
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Equation 10 reveals that for a light projectile where M >> m, the initial velocity v0 is much, much larger than 
the velocity of the catcher V, after the collision. 

 

The initial kinetic energy before the collision iK  is  

𝐾𝑖 =
1

2
𝑚𝑣0

2             (11.) 

The final kinetic energy immediately after the collision fK  is 

𝐾𝑓 =
1

2
(𝑚 + 𝑀)𝑉2         (12.) 

Substituting eqn. 10 into eqn. 11 yields 

𝐾𝑖 =
(𝑚+𝑀)2

2𝑚
𝑉2         (13.) 

The fractional loss of kinetic energy F can be found using eqns. 12 and 13 as  

𝐹 =
𝐾𝑖−𝐾𝑓

𝐾𝑖
= (1 −

𝐾𝑓

𝐾𝑖
) =

𝑀

(𝑚+𝑀)
        (14.) 

For the case of a light projectile, where again M >> m, the fraction of kinetic energy lost approaches one, 
corresponding to a loss of all the kinetic energy. 

 

The kinetic energy immediately after the collision at the bottom of the swing is completely converted to 
gravitational potential energy change at the top of the swing of the pendulum (assuming friction is negligible).  
The conservation of mechanical energy for this process can be written as, 

𝛥𝐾 + 𝛥𝑈 = 0 = (0 −
1

2
(𝑚 + 𝑀)𝑉2) + (𝑚 + 𝑀)𝑔ℎ     (15.) 

Where h is the vertical distance the center of mass of the catcher plus projectile rises up at the highest point 
of its swing.  Solving eqn. 15 for V yields, 

𝑉 = √2𝑔ℎ             (16.) 

Substituting eqn. 16 into eqn. 10 yields the simple formula for the initial velocity of the projectile vo in terms of 
the maximum height h of the pendulum swing shown in Figure 11 

𝑣0 =
(𝑚+𝑀)

𝑚
√2𝑔ℎ        (17.) 

So in principle all one has to do is measure the masses of the projectile and catcher, and the height of the 
pendulum swing, and then use eqn. 17 to calculate the initial projectile velocity v0. 

 

The problem with this method to determine v0 is that the actual height h for our apparatus is very small, less 
than 1 mm.  Therefore the determination of an accurate value for h must use an indirect method.  From the 
diagram of Figure 11, we can see that for small angles of swing, the horizontal distance moved, x , is much 
greater than the vertical distance moved, h. 
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Appendix B: Determination of the height of the swing h from the horizontal 
displacement x  

Referring to Figure 11 and using the Pythagorean theorem yields the relationship between the horizontal 
distance moved x , (which is what is actually measured via the slide and a measuring tape on the slider bar), 
and the maximum height h that the pendulum plus projectile rises due to the momentum of the catcher plus 
projectile after the collision. 

(𝑙 − ℎ)2 + 𝛥𝑥2 = 𝑙2       (18.) 

Expanding out the left hand side of eqn. 18,  

𝑙2 − 2𝑙ℎ + ℎ2 + 𝛥𝑥2 = 𝑙2          (19.) 

and simplifying 

−2𝑙ℎ + ℎ2 + 𝛥𝑥2 = 0         (20.) 

Equation 20 is a quadratic equation for the height h in terms of the horizontal displacement x  and l, the 
length of the pendulum arms between the pivot points.  Equation. 20 could be solved exactly for h using the 
quadratic formula, however, that complication is not necessary.  It is simpler to use the fact that for the 
apparatus at hand, the displacement h is much, much smaller than the pendulum arm length l, which allows us 
to obtain a very accurate and simple approximate formula for h.  Equation 20 is rewritten to emphasize this 
fact as 

ℎ(2𝑙 − ℎ) = 𝛥𝑥2      (21.) 

Dividing both sides by l2  yields 

ℎ (1 −
ℎ

2𝑙
) =

𝛥𝑥2

2𝑙
      (22.) 

For our lab apparatus, the distance h is very much less than l, as we will see, the ratio lh 2  is less than about 

3/1000, leading to a correction term in parenthesis that is less than than 0.3% (i.e. 3 parts in a 1000).  

Neglecting the small term lh 2  in eqn. 22 yields the simple, approximate formula for the height h. 

ℎ ≅
𝛥𝑥2

2𝑙
           (23.) 

Measurement of the horizontal displacement of the slider x , the length of the swing arms between the pivot 
points l, combined with eqn. 23 allows determination of the height h.  Substitution of this value of h into eqn. 
17 gives the initial velocity v0. 
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Appendix C: Theory for determination of D  

Since the launch is horizontal, the projectile travels a distance tvD 0=  horizontally in time t, where 0v  is the 

initial horizontal launch velocity.  For the time required to hit the floor, since the launch is horizontal there is 

no initial vertical velocity, and the projectile falls a distance 22gtH =  in time t.  Solving for the time t in 

terms of H and substituting in the equation for D yields the equation for the projectile range D when launched 
horizontally from a height H, 

𝐷 = 𝑣0√2𝐻 𝑔⁄      (24.) 

 

Referring to Figure 12, the vertical distance H is the distance from the bottom of the steel ball when mounted 
on the launcher to the floor (since the bottom of the ball touches the floor).  Also, the horizontal distance D is 
measured from the vertical center plane of the steel ball, since this is the plane where the bottom of the ball 
touches the ground.  From eqn. 24, one only need carefully measure H and have a value of v0 from part 1 to 
predict the range D of the projectile.   

 

Figure 12 - Horizontal and vertical projectile travel distances D and H defined.  The ball on 
the launcher rod is in the uncocked position.  A suspended 2 meter stick with the back 
edge passing thru the centerline of the ball and just touching the floor allows one to 
locate the line on the floor passing thru the vertical center plane of the projectile.   


