
9 - 1 

Lab 9: Ballistic Pendulum 

Experiment for Physics 225 Lab at CSU Fullerton. 

What You Need to Know 

Introduction: 

The ballistic pendulum is a pendulum with a device on the bottom end that “catches” a projectile 
from some type of launcher, and then converts the kinetic energy transferred to the catcher at 
the bottom of the swing, to gravitational potential energy as it swings up to a maximum height.  
Since the collision is inelastic, not all of the kinetic energy of the projectile before the collision 
actually gets transferred to the catcher plus projectile after the collision.  By measuring the 
maximum vertical height that the projectile plus catcher swing up to, one can apply energy and 
momentum conservation to determine the initial velocity of the projectile as it leaves the 
launcher.  The projectile could be a golf ball, baseball, tennis ball, soccer ball, paint ball, arrow, 
rock, bullet, cannon ball, steel ball bearing (as in this lab), or other object that one would like to 
know the speed of without having to measure its time of passage over a fixed distance.  Knowing 
the launch velocity of a projectile enables one to calculate its kinetic energy, and its range with a 
simple formula, assuming the effects of air resistance are negligible.   

The ballistic pendulum was invented in 1742 by English mathematician Benjamin Robins (1707–
1751), and published in his book New Principles of Gunnery, which revolutionized the science of 
ballistics, as it provided the first way to accurately measure the velocity of a bullet.  Other 
contemporaries used his method to determine the velocity of cannon balls of from 1-3 lbs.1   

Figure 1 shows a schematic idealization of a ballistic pendulum.  As can be seen from the Figure 
1, there are 3 phases of the motion that allow determination of the initial velocity of the projectile 

immediately after its launch, 0v .  The three phases are 1.)  after the projectile launch and before 

the collision (left), 2.) immediately after the collision and before the catcher with projectile moves 
appreciably (center), and 3.) after the collision at the top of the pendulum swing  (right). 

                                                      

1 https://en.wikipedia.org/wiki/Ballistic_pendulum  accessed 2/13/2019. 

Figure 1 - Simple single rod ballistic pendulum 
schematic showing the 3 phases of the 
motion. 

https://en.wikipedia.org/wiki/Benjamin_Robins
https://en.wikipedia.org/wiki/Ballistic_pendulum
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Summary:   

Today’s experiment has two major parts:   

1. In the first part you will determine the initial velocity 0v  of a steel ball immediately after 

it leaves a spring loaded launcher.   
This will be done by firing the projectile at the catcher and measuring the maximum 
horizontal distance x that the catcher plus steel ball is displaced from the bottom to the 
top of its swing.  The procedure will be repeated at least 6 times to get a good average, 
since there will be some variation in the launch velocity from shot to shot.  Momentum 
conservation during the collision and energy conservation after the collision will be 

applied to determine a formula for the initial velocity 0v .  It will be necessary to measure 

the length l of the center to center distance between the pivot points on the swing arms, 
the mass of the steel ball m, and the mass of the catcher M.  The mass of an individual 

swing arm am , should also be measured and recorded, although it is designed to be much 

smaller than the mass of the ball and catcher. 

2. In the second part of the experiment, you will use the value of 0v  determined in the first 

part above, combined with a careful measurement of the height of the bottom of the 
steel ball above the floor (when mounted on the launcher rod) H, to predict the horizontal 
distance D from the  vertical centerline of the steel ball to where it hits the floor (see 
Figure 7).   
A piece of fine cell graph paper will be taped to the floor (or rubber pad if available) with 
a line drawn on the paper labeled with the predicted distance D.  Carbon paper oriented 
with the carbon face down will be placed on top of the paper, so that when the launched 
ball strikes the carbon paper on the floor, it will leave a black impression mark on the 
graph paper where it landed.  6 launches of the steel ball onto the paper taped to the 
floor should be made.  The mean of the actual experimental distances (determined by 
measuring the distance from the predicted reference line to the black carbon marks on 
the paper) and their standard deviation will be determined and compared to the 
theoretical predicted distance. 

The graph paper with the carbon impressions and labeled reference distance on it should be 
turned in with the lab report, as that is primary data (if your instructor requires electronic 
submission of the lab report, take a good quality photo of your paper with the carbon impression 
and paste that in your Word document).  A single lab report with your measurements, sample 
calculations, answers to questions, and short conclusion should be turned in for each station.  Be 
sure to show sample calculations with the data from one of your trials for both parts of the 
experiment. 
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What You Need to Do 

Part 1: Determining the initial launch velocity 𝒗𝟎 of the projectile 

Theoretical Analysis for Determination of 𝒗𝟎. 

A) The ballistic pendulum setup you’ll be using is shown in Figure 2. Start by analyzing it 
to find the initial velocity of  the ball 𝑣0 in question 1. 

Question 1:  

Show the steps in deriving the following equation for the initial velocity of the ball 𝑣0 in relation 
to the height that the ball swings up to, ℎ, the mass of the ball 𝑚, the mass of the catcher 𝑀, 
and the local gravitational constant 𝑔. 

𝑣0 =
(𝑚 + 𝑀)

𝑚
√2𝑔ℎ 

 

For details or assistance in deriving this equation see Appendix A, or your instructor may wish 
to walk you through it.  

B) To assist in this experiment an excel spreadsheet is provided that utilizes the above 
equation with values that you will measure. Open the Ballistic Pendulum 
Calculations spreadsheet and check out the equations in cells G15-G20 and H15-H20 
to verify you understand it’s the equation found in question 1. 

C) Note that the height h is a bit tricky to measure, but can be found from the 
horizontal motion of the arm, which is derived in Appendix B to be approximately 

ℎ ≅
Δ𝑥2

2𝑙
 

where Δ𝑥 is the horizontal displacement of the catcher, and 𝑙 is the length of the 
swing arms. Locate cells E15-E20 and verify you understand its utilizing this 
equation. 

 

Figure 2 – multistage problem for ballistic pendulum 

𝑙 

ℎ 

Δ𝑥 
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Experimental procedure for determination of v0   

Now you’ll find 𝑣0 experimentally by taking the data needed for the equation in question 1. 

D) Prepare to Launch the ball. 

a. Using the white plunger knob on the end of the launcher, pull it back so that 
it compresses the spring and holds it there, as shown in Figure 4.   

b. The steel ball has a hole thru it that allows it to mount on the end of the 
launcher rod.  Place the steel ball on the launching rod and make sure the 
ball is put all the way onto the rod so that it contacts the larger diameter 
portion of the rod.   

Note: It must be in this position when the launching ring is pulled up to avoid 
large errors. 

c. Use a pencil, pen, or lightweight ruler to gently nudge the slider so that it 
contacts the small vertical rod underneath the catcher and record the initial 
reading xi of one end of the slider which is on the yellow measuring tape 
attached to the top of the measuring bar, as shown in Figure 5.   

Figure 3 - (left) Photo of ballistic pendulum apparatus used in this lab.  The slider is shown directly 
underneath the catcher.  (right) Schematic diagram of ballistic pendulum. 

Figure 4 - Photo of spring launcher in 
the cocked position with steel ball 
mounted on the end.  Pull the white 
knob to the right to cock the spring.  
Pulling up the ring on the left of the top 
rod launches the projectile. 

Figure 5 - Close up of catcher, slider, and 
measuring bar.  Take measurements from the 
end of the slider that is farthest from the rod on 
the bottom of the catcher. 𝑥𝑖 = 7.3𝑐𝑚 shown. 
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d. Make sure you measure the initial position of the slider to an accuracy of less 
than 1mm (the scale readings are only 1mm apart, so estimate to the nearest 
0.5mm). 

e. Enter this value in the labeled and highlighted column in the ballistic 
pendulum spreadsheet provided.   

E) Launch the projectile  

a. Before launching, insure that the ball is all the way back on the launching rod 
and that the short rod on the bottom of the catcher is in contact with the 
slider, as shown in Figure 5. The measurements of the initial and final 
positions of the slider are the largest sources of error in the experiment, and it 
is essential that care be taken in determining them. 

b. Hold the apparatus down firmly with one hand to keep it from moving while 
the launching ring is pulled straight up, in order to prevent the catcher from 
swinging due to pulling on the launching ring. 

c. To launch pull straight up on the steel ring, taking care not to disturb the 
catcher or move the slider during the process.   

F) Record the final position xf of the slider on the same end you measured the initial 
position to the nearest 0.5mm.  Enter this value in the labeled and highlighted 
column of the ballistic pendulum spreadsheet, shown in Figure 6. 

G) Repeat the previous steps 5 more times so that you have 6 total “good” values of 

the horizontal displacement 𝛥𝑥 = |𝑥𝑓 − 𝑥𝑖|.  The values should not deviate by more 

than 5-10%  from the average of all 6 values (hopefully less).  You can check this by 
entering the values in the spreadsheet, which calculates the mean and standard 
deviation of the 6 trials at the bottom of each column.     

Figure 6 - Ballistic pendulum spreadsheet calculations based on sample data.  Enter your 
numbers in the highlighted cells only, which will be empty when you open the spreadsheet. 
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H) Measure the center to center distance between the pivot points of any one metal 
strip, which is the swing arm length 𝑙. Enter the swing arm length 𝑙 into the labeled 
cell in the spreadsheet.   

a. This can be done when the swing arms are mounted on the catcher, taking 
care to note where the center of the pivoting locations are.  (Note that 𝒍 is 
NOT the end to end length of the swing arms!).  

I) Use a scale in lab to measure the masses of the steel ball m, the catcher M, and one 
of the swing arms ma 

a. Carefully remove the ball catcher apparatus from the swing arms. 

b. Carefully remove the metal strip swing arms from the ball catcher and 
apparatus, supporting it with one hand underneath while taking them off the 
catcher.  The metal strip swing arms can bend and break easily, so be careful. 

c. LEAVE THE SWING ARMS OFF THE CATCHER AND APPARATUS FOR NOW 
SINCE THEY MUST BE OUT OF THE WAY FOR THE NEXT PART OF THE 
EXPERIMENT. 

J)  Observe that the calculations for the initial projectile velocity vo are performed in 
the provided ballistic pendulum spreadsheet once you enter all 6 values of the initial 
and final positions of the slider, the length of the slider arms, and the masses of the 
catcher, projectile and swing arm.   

The spreadsheet calculates all the important relevant quantities, the swing height h, 

the error term lh 2 , the catcher plus projectile velocity V after the collision, the 

fractional amount of kinetic energy lost due to the inelastic collision, but most 
importantly, the mean and standard deviation of the initial velocity of the projectile 
v0.  The initial projectile launch velocity is the only input from this section to the next 
part of the experiment on determining the projectile range.   

K) Note the initial projectile launch velocity that is calculated from the equations in the 
excel sheet. It will be used in the next section. 
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Part 2: Determining the horizontal range D of the projectile from the 
initial velocity 𝒗𝟎. 

If the catcher weren’t there, how far horizontally would the ball go before hitting the ground? 

Theoretical Analysis for Determination of 𝑫, the range of the projectile. 

 

Question 2:  

Show the steps in deriving the following equation for the distance the ball will travel 𝐷, in 
relation to the initial velocity of the ball 𝑣0, and the height from the bottom of the ball to the 
floor 𝐻, and the local gravitational constant 𝑔. 

𝐷 = 𝑣0√2𝐻 𝑔⁄  

 

See Appendix C for assistance in this calculation and explanation of what the height 𝐻 is. 

A) Again this is calculated for you in the spreadsheet based off your measurements in part 
1. Take a look at cells J15-J20 to verify this equation is in use. 

 

Experimental procedure for Measuring D, the range of the projectile 

Now take experimental measurements to verify the above theory for calculating 𝐷. We’ll utilize 
the prediction for 𝐷 in our measurements. 

A) Take an accurate measurement of the bottom of the steel ball to the floor. 

a. This should be done to an accuracy of no worse than 0.5 cm.   

b. Use a 2 meter stick suspended vertically and plastic ruler to measure the 
distance to the floor from the bottom of the steel ball when it is mounted on 

Figure 7 – Diagram of the ball launch off the table. 
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the launcher, with the launcher not cocked (this is the position that the ball is 
released from with horizontal velocity 𝑣0 as shown in Figure 8).   

c. Put a piece of masking tape on the floor with the edge against the back of 
the 2 meter stick where it contacts the floor.   

d. Enter the value of H that you just measured in the labeled cell of the ballistic 
pendulum spreadsheet.  The spreadsheet will now calculate the predicted 
value of D for each trial and the average and standard deviation of these 
values. 

B) Now locate the average predicted value of D from the spreadsheet calculation.   

a. Use a 2 meter stick to measure from the tape on the floor in part A) to the 
predicted distance D and put another piece of masking tape on the floor with 
its edge where the predicted distance D is.   

Figure 8 - Measuring method to determine H using a 2 
meter stick and small ruler placed under the steel ball 
and held horizontally.  The other end of the vertical 2 
meter stick is on the ground. 

Figure 9 - Setup showing how to measure the horizontal reference distance Dr using masking tape on 
the floor.  Fine cell graph paper is taped on the rubber mat in a cardboard box lid.  Carbon paper placed 
face down on the graph paper leaves black impression marks where the steel ball lands. 
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b. The distance between the 2 nearest edges of the pieces of tape on the floor 
should be the average predicted distance D, (see Figure 9).  This is called the 
reference mark distance Dr in the spreadsheet.   

c. Take a piece of mm cell graph paper and draw a horizontal line on it near the 
bottom of the paper when the paper is oriented with the long side vertical.  
Label this line with the average predicted distance on it.   

d. Match up the line on the graph paper with the line on the tape on the floor, 
and tape the graph paper down, face up, to the rubber sound deadening mat 
in the box.  That way the graph paper will have a calibrated reference line on 
it at the predicted distance D away.  (see Figure 9) 

C) Take one or two trial shots with just the graph paper to make sure that the 
launching apparatus is lined up and that the ball lands within about 10-15 cm of the 
predicted line and not too far off the center line of the short edge of the graph 
paper.  If not, double check your measurements in steps A),B) and move the graph 
paper as necessary.  Be sure to label a reference line on the graph paper where it 
lines up with the reference distance Dr . 

D) Lay carbon paper on top of the graph paper, black carbon face down so that when 
the steel ball lands on the carbon paper, it will leave a black impression mark on the 
graph paper.   

 
DO NOT TAPE THE CARBON PAPER, the graph paper should be fixed down but the carbon 
paper can move freely and still do it’s job. 

E) Now make 6 shots with the carbon paper face down on top of the graph paper.   

a. After each shot life the carbon paper and label the mark with the 
corresponding trial number as shown in Figure 10. 

F) Lift the carbon paper to ensure that the steel ball left at least 6 good marks on the 
graph paper.   

G) When you are done with launching the steel ball onto the floor, carefully remount 
the catcher and swing arms onto the apparatus 

H) Take your graph paper off of the box and measure the distances of the black carbon 
round impressions from the predicted value of D line that was drawn on the paper in 
part iii.).   

a. See the example in Figure 10. 
b. So that you do not make a mistake, for each impression enter the distance 

from the predicted reference line to the darkest point of the black impression, 
call them 𝛥𝐷𝑚.   

c. Make this distance negative if it is less than D and positive if it is farther than 
D.  Enter the actual reference distance Dr labeled on the graph paper in the 
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cell on your spreadsheet and these 6 values of mD  (in cm!) in the labeled 

column of the spreadsheet.   
d. The spreadsheet will calculate the corresponding measured value of Dm

2 for 
each trial (in meters), the mean and standard deviation of the 6 measured 
values and the percent error3 between the average experimental and average 
theoretical values. 

I) Prepare to submit your excel table to your instructor. 

a. If using word copy the table and paste it as an image (through the right click 
menu). DO NOT just use copy from Excel and paste into Word, the 
spreadsheet formatting will be a mess in the word document. 

J) Prepare to submit your graph paper with measurements. 

a. Since this is primary data, make sure to include your graph paper with the 
labeled average predicted line, and the average measured line drawn on it in 
your lab report.   

                                                      

2 𝐷𝑚 = (𝐷𝑟 + 𝛥𝐷𝑚) 

3 % 𝐸𝑟𝑟𝑜𝑟 =
|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|

|𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|
× 100.  

Figure 10 - Steel ball impact data showing reference mark labeling and example of distance   from 
reference mark to carbon paper black impression.  Enter these numbers for each trial shot in the 
spreadsheet column labeled Δ𝐷𝑚  , example Δ𝐷1 shown.  𝐷𝑟 =131 cm in this example.   
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b. If your instructor requires electronic submission of your lab report, include a 
good quality photo of the graph paper with the black impressions from the 
impact of the steel ball on it pasted in your Word document. (use your phone 
camera). 

K)  Take a few minutes to examine all the columns and calculations on the spreadsheet 
and understand what each calculation is doing.   

a. You should take one row of the spreadsheet and perform sample calculations 
of each quantity in that row in order to make sure that you understand how to 
perform the calculations and that the spreadsheet calculations are correct.   

b. Refer to eqns. 10-23 as needed to perform the calculations.   
c. Include the sample calculations in your report in a section labeled Sample 

Calculations. 

L)  The results of your experiment can be summarized by the average predicted value 
of D plus or minus 2 standard deviations4, and the average measured value of Dm 
plus or minus 2 standard devations.   

M) Calculate the percent error of the two values in your conclusion or summary of the 
experiment.   

N) Please make sure the lab is now setup as it was when you entered the room before 
leaving. 

Question 3: 

Do the predicted and measured average values overlap within the error uncertainty values?  
Answer with specific examples from your data. 

 

 

 

 

 

 

                                                      

4 It has become more common to report error uncertainty values corresponding to 2 standard deviations, instead 
of 1 standard deviation as done previously. 
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Analysis Questions 

Answer the following questions to your instructors discretion based on available remaining time 
and what your instructor would like you to focus on. 

These could also be answered at home in preparation for the lab.   

Question 4: 

What is being ignored in applying momentum conservation to the collision between the 
projectile and catcher?  (hint; what is the condition for momentum to be conserved?)  Is this 
condition satisfied and why or why not?   

Question 5: 

What if any errors are introduced by assuming the momentum during the collision is 
conserved?   

Question 6: 

Consider the swing arms in this application: 

a) What is the effect of the movement of the swing arms?  How should this be accounted for? 
(they contribute differently to the momentum of the catcher, its kinetic energy, and its 
gravitational potential energy).   

b) Does including the effects of the swing arms increase or decrease the predicted distance?   

Question 7: 

What are the effects of the friction, momentum, and kinetic energy of the slider?   

Question 8: 

What are the effects of friction in the 8 swing arm pivots due to the rotation?   

Optional additional consideration: 

Question 9*: 

a) Can you find a rough estimate for the collision time assuming the catcher does not move 
more than 1 mm during the collision?   

b) How large is the correction term and what is the size of the error due to making the 

approximation of neglecting lh 2  in eqn. 22? 

 

 

 

KW  3/20/19 rev. 2023 
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Appendix  A:  

Theory for determination of v0.   

In the simple single rod ballistic pendulum of figure 1, the catcher with ball rotates about the 
top pivot point, thus the initial kinetic energy involves the moment of inertia of the catcher 
(with projectile) and rod about the pivot point.  To avoid this complication and eliminate the 
rotation of the catcher with projectile, parallelogram linkage is used, as shown in Figure 11.  
The modification of the ballistic pendulum using parallelogram linkage is called Ackley’s ballistic 
pendulum and was first described in 19621.  As can be seen from Figure 11, the parallelogram 
linkage prevents the catcher from rotating (like a glider on a swing set), thus eliminating angular 
rotation and catcher moment of inertia effects that are not accounted for in the simple 
formulation.  The ballistic pendulum used in this lab uses parallelogram linkage, as shown in 
Figure 11. 

 

Newton’s 2nd law applied to a system of particles can be written as (consult your textbook or 
instructor for the derivation of this form of Newton’s second law) 

extnet
cm F
td

Pd
,




=      (1.) 

Where cmP


 is the momentum of the center of mass of the particles, and extnetF ,


 is the net 

external force acting on the system of particles (i.e. the vector sum of the external forces acting 
on the system of particles).  The internal forces between the particles sum to zero by Newton’s 
3rd law of action and reaction, so they do not have to be considered in the sum of the forces.   

Figure 11 - (Left)  Schematic diagram of ballistic pendulum with parallelogram linkage.  Due to 
the collision of the projectile with the catcher, the catcher with steel ball moves a horizontal 
distance   and up a distance h.  (Right)  Photo of catcher showing the location of the steel ball 
when caught and the yellow slider moved by the rod underneath the catcher during its swing. 
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Equation 1 is a vector equation, so it applies to each vector component on the left and right 
hand sides of eqn 1.  For the 2 dimensional motion considered here,  

𝑑𝑃𝑐𝑚,𝑥

𝑑𝑡
= 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑥     (2.) 

𝑑𝑃𝑐𝑚,𝑦

𝑑𝑡
= 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑦     (3.) 

If the net external force is zero in the x direction, 0,, =xextnetF , then from eqn. 2 

𝑑𝑃𝑐𝑚,𝑥

𝑑𝑡
= 0            (4.) 

Eqn. 4 then implies that  

𝑃𝑐𝑚,𝑥 = constant       (5.)  

or equivalently between an initial and final state when there is no net external x force acting,  

𝑃𝑐𝑚,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑐𝑚,𝑥,𝑓𝑖𝑛𝑎𝑙       (6.)  

Since the center of mass momentum 𝑃⃗ 𝑐𝑚 equals the total momentum 𝑃⃗ 𝑡𝑜𝑡 of the system of 
particles, eqn. 6 can be rewritten as  

𝑃𝑡𝑜𝑡,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑡𝑜𝑡,𝑥,𝑓𝑖𝑛𝑎𝑙       (7.)  

Equation 7 is the statement of momentum conservation along the x direction when there is no 
net external force acting along that direction during the motion between the initial and final 
states chosen.   

 

Similarly, for the case when there is no net external force in the y direction, 𝐹𝑛𝑒𝑡,𝑒𝑥𝑡,𝑦 = 0, the 

same steps and reasoning shows that the total momentum in the y direction is also conserved 

𝑃𝑡𝑜𝑡,𝑦,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑃𝑡𝑜𝑡,𝑦,𝑓𝑖𝑛𝑎𝑙       (8.) 

For the case at hand, we have two objects in motion, the projectile and the catcher.  Initially 
the catcher is not moving or accelerating, so the sum of the external forces acting on the 
catcher is initially zero.  During the catching process, it is assumed that it takes place so quickly 
that the motion of the catcher is negligible, so that the net external forces in both the x and y 
directions remain zero during the collision, and we can apply momentum conservation along 
the x direction (the y direction momentum is initially zero and remains zero during the 
collision).   

 

Before the collision, only the projectile of mass m is moving horizontally with velocity v0 . 
Immediately after the collision, both the projectile and catcher of mass M are moving 
horizontally with the same speed V.  This situation is called a completely inelastic collision, or 
sometimes a perfectly inelastic collision.  Equation 7 can be written for this situation as  

𝑃𝑡𝑜𝑡,𝑥,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑚𝑣0 + 0 = 𝑚𝑉 + 𝑀𝑉 = 𝑃𝑡𝑜𝑡,𝑥,𝑓𝑖𝑛𝑎𝑙    (9.) 
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Solving eqn. 9 for the initial projectile velocity v0 in terms of the velocity V of the catcher plus 
projectile immediately after the collision.  

𝑣0 =
(𝑚+𝑀)

𝑚
𝑉       (10.) 

Equation 10 reveals that for a light projectile where M >> m, the initial velocity v0 is much, 
much larger than the velocity of the catcher V, after the collision. 

 

The initial kinetic energy before the collision iK  is  

𝐾𝑖 =
1

2
𝑚𝑣0

2             (11.) 

The final kinetic energy immediately after the collision fK  is 

𝐾𝑓 =
1

2
(𝑚 + 𝑀)𝑉2         (12.) 

Substituting eqn. 10 into eqn. 11 yields 

𝐾𝑖 =
(𝑚+𝑀)2

2𝑚
𝑉2         (13.) 

The fractional loss of kinetic energy F can be found using eqns. 12 and 13 as  

𝐹 =
𝐾𝑖−𝐾𝑓

𝐾𝑖
= (1 −

𝐾𝑓

𝐾𝑖
) =

𝑀

(𝑚+𝑀)
        (14.) 

For the case of a light projectile, where again M >> m, the fraction of kinetic energy lost 
approaches one, corresponding to a loss of all the kinetic energy. 

 

The kinetic energy immediately after the collision at the bottom of the swing is completely 
converted to gravitational potential energy change at the top of the swing of the pendulum 
(assuming friction is negligible).  The conservation of mechanical energy for this process can be 
written as, 

𝛥𝐾 + 𝛥𝑈 = 0 = (0 −
1

2
(𝑚 + 𝑀)𝑉2) + (𝑚 + 𝑀)𝑔ℎ     (15.) 

Where h is the vertical distance the center of mass of the catcher plus projectile rises up at the 
highest point of its swing.  Solving eqn. 15 for V yields, 

𝑉 = √2𝑔ℎ             (16.) 

Substituting eqn. 16 into eqn. 10 yields the simple formula for the initial velocity of the 
projectile vo in terms of the maximum height h of the pendulum swing shown in Figure 11 

𝑣0 =
(𝑚+𝑀)

𝑚
√2𝑔ℎ        (17.) 

So in principle all one has to do is measure the masses of the projectile and catcher, and the 
height of the pendulum swing, and then use eqn. 17 to calculate the initial projectile velocity v0. 
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The problem with this method to determine v0 is that the actual height h for our apparatus is 
very small, less than 1 mm.  Therefore the determination of an accurate value for h must use an 
indirect method.  From the diagram of Figure 11, we can see that for small angles of swing, the 
horizontal distance moved, x , is much greater than the vertical distance moved, h. 
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Appendix B: Determination of the height of the swing h from the 
horizontal displacement x  

Referring to Figure 11 and using the Pythagorean theorem yields the relationship between the 
horizontal distance moved x , (which is what is actually measured via the slide and a 
measuring tape on the slider bar), and the maximum height h that the pendulum plus projectile 
rises due to the momentum of the catcher plus projectile after the collision. 

(𝑙 − ℎ)2 + 𝛥𝑥2 = 𝑙2       (18.) 

Expanding out the left hand side of eqn. 18,  

𝑙2 − 2𝑙ℎ + ℎ2 + 𝛥𝑥2 = 𝑙2          (19.) 

and simplifying 

−2𝑙ℎ + ℎ2 + 𝛥𝑥2 = 0         (20.) 

Equation 20 is a quadratic equation for the height h in terms of the horizontal displacement x  
and l, the length of the pendulum arms between the pivot points.  Equation. 20 could be solved 
exactly for h using the quadratic formula, however, that complication is not necessary.  It is 
simpler to use the fact that for the apparatus at hand, the displacement h is much, much 
smaller than the pendulum arm length l, which allows us to obtain a very accurate and simple 
approximate formula for h.  Equation 20 is rewritten to emphasize this fact as 

ℎ(2𝑙 − ℎ) = 𝛥𝑥2      (21.) 

Dividing both sides by l2  yields 

ℎ (1 −
ℎ

2𝑙
) =

𝛥𝑥2

2𝑙
      (22.) 

For our lab apparatus, the distance h is very much less than l, as we will see, the ratio lh 2  is 

less than about 3/1000, leading to a correction term in parenthesis that is less than than 0.3% 

(i.e. 3 parts in a 1000).  Neglecting the small term lh 2  in eqn. 22 yields the simple, 

approximate formula for the height h. 

ℎ ≅
𝛥𝑥2

2𝑙
           (23.) 

Measurement of the horizontal displacement of the slider x , the length of the swing arms 
between the pivot points l, combined with eqn. 23 allows determination of the height h.  
Substitution of this value of h into eqn. 17 gives the initial velocity v0. 
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Appendix C: Theory for determination of D  

Since the launch is horizontal, the projectile travels a distance tvD 0=  horizontally in time t, 

where 0v  is the initial horizontal launch velocity.  For the time required to hit the floor, since 

the launch is horizontal there is no initial vertical velocity, and the projectile falls a distance 

22gtH =  in time t.  Solving for the time t in terms of H and substituting in the equation for D 

yields the equation for the projectile range D when launched horizontally from a height H, 

𝐷 = 𝑣0√2𝐻 𝑔⁄      (24.) 

 

Referring to Figure 12, the vertical distance H is the distance from the bottom of the steel ball 
when mounted on the launcher to the floor (since the bottom of the ball touches the floor).  
Also, the horizontal distance D is measured from the vertical center plane of the steel ball, since 
this is the plane where the bottom of the ball touches the ground.  From eqn. 24, one only need 
carefully measure H and have a value of v0 from part 1 to predict the range D of the projectile.   

 

Figure 12 - Horizontal and vertical projectile travel distances D and H defined.  The ball on 
the launcher rod is in the uncocked position.  A suspended 2 meter stick with the back 
edge passing thru the centerline of the ball and just touching the floor allows one to 
locate the line on the floor passing thru the vertical center plane of the projectile.   


