Research Interests

My research focuses on student understand of more advanced topics in a physics degree. In particular, I am most interested in how people learn quantum mechanics. Quantum mechanics is one of the most predictively powerful theories in physics - and yet it can be very counter-intuitive as it describes the behavior of very small, isolated systems that do not act accoring to the laws of Newtonian physics. Below are a couple of the research interests that I have at the moment. All of these projects have the opportunities for undergraduate and graduate research projects. Email me at (gpassante at fullerton dot edu) if you are interested in learning more.

Tutorials:

At the University of Washington I was part of a project to develop curricular materials that help students learn some of the most difficult concepts. These materials are called Tutorials in Physics: Quantum Mechanics. While at the University of Washington we validated the effectiveness of these materials at improving student conceptual understanding using written pre- and post-tests, as well as individual student interviews.  We are infestigating why some of the materials are very effective, while others less so by analyzing student interactions while working through the tutorials in authentic classroom settings.  

Analogies, Images, and the Classical/Quantum Connection:

It is common when teaching and learning new material to utilze images and analogies to well-understood topics or phenomena. In quantum mechanics these methods have the complication that all of the images and analogies we construct are embedded in the classical world (that open the laws of Newtonian physics). There is a need to investigate in what ways these classical analogies enhanse student learning and in what ways, if any, they hinder it.  

Combining Research-based Instructional Tools:

There are many different research groups working on different instructional tools and stragegies to improve learning in physics classes. This is also true within quantum mechancis.  I am working with other researchers to incorporate several research-based tools together into a unifed curriculum to improve student understanding.  The idea is that each tool has different strengths, and by combining them we will be able to improve student learning by more than we would have been able to with any one tool.

Math in the Quantum Classroom:

Quantum mechanics relies on mathematics to help describe the phenomena.  This math is often new and can become the most difficult part of a quantum mechanics course.  I am interested in further investigating how students are able to integrate the new mathematics and new physics together in the quantum context.