Introduction to Electrical Measurements and Electronic Circuits.

Dr. Murtadha A. Khakoo
(2009)

Adapted from
By Dr. Raymond Adams (1989) includes:

Setup by Kenneth James Jr.
Basic Stamp Exercises by Mark Hughes

Physics Department,
California State University,
Fullerton
Aims of the Laboratory and Philosophy.
The aims of this laboratory is also to make you able to keep a professional scientific laboratory record of what you did so that it can be reviewed (in this case by others) to see what was done. It is also a lab that instructs on emergency Band-Aid electronics, which some of you will need in your future employment.
You should also "collaborate"/"brain-storm" with your colleagues to enable you to go through the exercise. This will foster collaborative research spirit in your professional outlook. Remember you can always learn from exchanging ideas (both parties).

Laboratory Note Book
The recommended book is the 10X7.87, 5X5 Quad (approx $3) which has grilled rule. (National #53-110, or equivalent).
IMP. You should do all the formal exercise on the right page of the notebook leaving the other page for comments, calculations for yourself.
Keeping this laboratory note book up to date is a very good strategy to succeed.

Recommended Text
The recommended texts are:
The Art of Electronics (Paperback), by P.Horowitz and Hill, Cambridge Univ. Press, 1989-1992 or
Both are very good reference books for our particular course.

It is recommended that you browse through both references and use these whenever you can (often) to enable you to understand the basis of operation of the circuits.

Other
I do not approve of students dragging their heels and copying from others, and I expect you to put your honest effort to stay on schedule like most of the students in the class. Turning up late to class is going to be recorded in a register and will affect your grade. *I will have the laboratory open by the Department Staff (upon request) on other hours,* but you will not get any supervision during these hours. These laboratory hours are meant to enable you to catch up with the scheduled exercise, or to prepare for the coming exercise.

Examination
Prior to all the exams, there will be a pre-exam exercise i.e. you will be given an exercise to help you complete the test using the work you did to answer the pre-exam questions, else we will discuss pertinent example problems before the quiz. You will not be graded on the pre-quiz although this is crucial to your performance in the quiz (as expected).
Note to The Student

This laboratory course, is developed as a practical course, with some emphasis on the underlying theory. However, much practical work in electronics can be done without a thorough understanding of the theory. Especially is this true when integrated circuits (IC's) are used. It normally is only necessary to understand how to connect and use the IC. Of course, a good knowledge of electronic measurement techniques is required. Do not be concerned when detailed theory of circuit operation is not fully covered in the laboratory course: this omission is intentional.

This laboratory manual is prepared for you to use in carrying out the experiments. Most of the theory involved is not in the manual. You are expected to read references (these are given on following pages for all experiments and are in the recommended texts) in order to learn the theory behind each experiment, and to obtain other valuable information concerning electronics. It will be necessary for your instructor to give you specific information concerning laboratory techniques, including how to operate the laboratory instrumentation.

Prior to taking this course, most students have almost no practical knowledge of electronic instrumentation. It is the purpose of this course to provide you with the ability to use an oscilloscope, DC power supplies, function generators and multi-meters. [These are the most useful equipment items for use in electronics experimentation.] It is also the purpose of this course, after we review the basic concepts associated with circuit elements (resistors, capacitors, diodes and transistors), to introduce you to the wonderful world of integrated circuits. It is not possible, in the limited time of this course, to give you experience in more than a few of the many useful circuits that are based upon each integrated circuit.

However, the introduction that you do get should make it possible for you to read about, and assemble and test, additional circuits as you need them.

The present laboratory manual including the Basic Stamp™ Microprocessor exercises are also on Computer Disk and on your laboratory computer as an HTML file.

A word concerning the excellent reference texts, Horowitz and Hill and Simpson: only a fraction of the pages of these texts are specifically referenced for these experiments. However, they are excellent references for your own physics library. Keep them and refer to them when you need a reference on some electronics circuit. Both texts' indexes are an excellent starting point for locating the desired material. Browse through the text to get a perspective on what it contains. This text is currently used in the CSUF lecture course, Electronic Circuit Theory.

That course, which is recommended to you, delves more deeply into the theory and practice of electronics for the physicist.

Finally, enjoy learning the wonderful and powerful world of electronics and make sure you keep up with the course!

Dr. Murtadha A. Khakoo, (2009)
SHORT TABLE OF CONTENTS

This is a short table of contents. For more detail, see the Assignment Schedule on the following pages.

To find the pages for each experiment, look at lower right corner of pages for the experiment number, look at the bottom center of the pages for the page number within the experiment discussion. When Appendices are needed, they appear in pages that immediately follow the individual experiment discussion.

EXPERIMENT ASSIGNMENT SCHEDULE

<table>
<thead>
<tr>
<th>COMPONENTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP: 1 INSTRUMENT FAMILIARIZATION, DC CIRCUIT ANALYSIS</td>
</tr>
<tr>
<td>EXP: 2 RC CIRCUITS</td>
</tr>
<tr>
<td>EXP: 3 POWER DIODES, SIGNAL DIODES, ZENER DIODES</td>
</tr>
<tr>
<td>EXP: 4 TRANSISTORS</td>
</tr>
<tr>
<td>EXP: 5 OP-AMP CIRCUITS</td>
</tr>
<tr>
<td>EXP: 6 COMPARATOR IC CIRCUITS</td>
</tr>
<tr>
<td>EXP: 7 TIMER IC CIRCUITS</td>
</tr>
<tr>
<td>EXP: 8 PULSE SAMPLING CIRCUITS</td>
</tr>
<tr>
<td>EXP: 9 DIGITAL IC CIRCUITS: GATES, FLIP-FLOPS, ETC.</td>
</tr>
<tr>
<td>EXP: 10 BASIC STAMP EXERCISES</td>
</tr>
</tbody>
</table>
PHYSICS 380 LABORATORY - ASSIGNMENT SCHEDULE

This set of experiments is designed for 15 weeks of classes, with two 3-hour laboratory periods each week. In addition, one hour of lecture each week is assumed.

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab Day</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>1</td>
<td>EXP:1.1 INSTRUMENT FAMILIARIZATION: oscilloscope, function generator, DC power supply, multimeter.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>EXP:1.2 DC CIRCUIT ANALYSIS: series, parallel resistors, Thevenin & Norton equivalent active circuits.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>EXP:2.1 RC CIRCUITS: low-pass and high-pass RC filters, differentiators, integrators, band-pass RLC circuit.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>EXP:2.2 RC CIRCUITS: transient response, Laplace transform method of circuit analysis</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>EXP:3.1 POWER DIODES: half-wave, full-wave bridge rectifier; IC voltage regulator</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>EXP: 3.2 SIGNAL DIODES: clipper, clamp, frequency meter ZENER DIODES: used as voltage regulators</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>EXP: 4.1 TRANSISTORS: PNP & NPN characteristic curves (using curve tracer) EXP: 4.2 TRANSISTOR: switch circuit</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>EXP: 4.3 TRANSISTOR: emitter follower circuit EXP: 4.4 TRANSISTOR: emitter-coupled amplifier</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>EXP: 4.5 TRANSISTOR: unity-gain phase splitter, unity-gain phase shifter</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>NO NEW EXPERIMENT - Wrap-up transistor experiments</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>STUDY: OP-AMP limitations: phase shift compensation, offset voltage, input bias current, input offset voltage</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>EXP: 5.1 OP-AMP AMPLIFIERS: differential, non-inverting, and inverting amplifiers</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>EXP: 5.2 OP-AMP ANALOG MATHEMATICS: integrator, differentiator and summing amplifier,</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>EXP: 5.3 OP-AMP ACTIVE FILTERS: low-pass, high-pass and band-pass filters</td>
</tr>
</tbody>
</table>
15 NO NEW EXPERIMENT - Wrap-up of OP-AMP experiments

9 16 EXP: 6.1 COMPARATOR IC: Schmidt trigger
 EXP: 6.2 COMPARATOR IC: relaxation oscillator
17 EXP: 7.1 TIMER IC: monostable time delay
 EXP: 7.2 TIMER IC: relaxation oscillator

10 18 EXP: 8.1 PULSE SAMPLING: peak voltage detector
 EXP: 8.2 PULSE SAMPLING: sample-and-hold circuit
19 EXP: 9.1 DIGITAL IC GATES: NOT, AND, OR, NAND, NOR, FOR
 Use of logic pulser

11 EXP: 9.2 DIGITAL ICs: logic circuits, Boolean algebra

21 EXP: 9.3 DIGITAL ICs: flip-flops constructed from NAND Gates

12 22 EXP: 9.4 DIGITAL ICs: counter (scaler) using JK flip-flops
 EXP: 9.6 DIGITAL ICs: shift register, using TIC flip flops

13 24 EXP: 10.1 BASIC STAMP MICROPROCESSOR Ex. 1
 EXP: 10.2 BASIC STAMP MICROPROCESSOR Ex. 2

14 26 EXP: 10.3 BASIC STAMP MICROPROCESSOR Ex. 3
 EXP: 10.4 BASIC STAMP MICROPROCESSOR Ex. 4

15 28 EXP: 10.5 BASIC STAMP MICROPROCESSOR Ex. 5

15 COMPLETE YOUR LAB WRITE-UPS
COMPONENTS LIST

Resistors (*)1%, others 5% (6 each unless otherwise noted)
68 (2) 100 (2) 220 470 (2) lK(*) 4.7k
5.6k (2) 10k(*) 15k 22k 47k (2) 68k
82k 100k(*) 220k (4) 1M
Potentiometer 50k

Capacitors [uF = microfarad]
39 pF (2) .0033 uF (3) .01 uF (6)
.1 uF (6) 100 uF (1) 4.7 uF tantalum (1)

Diodes
2N4002 silicon (2) 1N4728 3-V Zener (2); Light emitting, (LED) (5)

Transistors
2N2222A (1) NPN general purpose silicon
2N2907A (1) PNP general purpose silicon (complementary to 2N2222A)
2N5245 (1) FET, N-channel silicon

Integrated Circuits (1 each, except as noted)
LM 301, LM 741 op-amps
353N dual op-amp - FET-input
LM 311 comparator; 556 (dual 555 timer)
7400 (2) quad NAND gate, not open collector
7450 dual 2-wide-AND-OR-INV gate (AND-NOR)
7473 (2) dual JK flip-flop with clear
74LS164 8-bit parallel output serial shift register

Miscellaneous items
VE48 (1) bridge rectifier
78L05 5-V voltage regulator

Note: Each station is has 1 dual-trace digital oscilloscope, 1 DC power supply (0 to +6V, 0 to +18V, 0 to -18V), 1 function generator (0 to 100kHz.sine, square and triangle waveforms), 1 digital multimeter, 1 decade resistance box (to 100k). A 6.3VAC-output transformer is provided for the rectifier experiments.
GENERALLY USEFUL MATERIAL.

1. CIRCUIT BOARD WIRING INSTRUCTIONS:

Sample "Bread" Circuit Board Inter-Hole Connections. These will vary, but in general follow a standard architecture. *With reference to the drawing of the bread board below:*

1. The uppermost holes marked X-X are wired together. Use for +Vcc (P/S voltage).
2. The lowermost holes marked Y-Y are wired together. Use for GROUND.
3. Each 5 holes in a single column marked A-B-C-D-E are wired together.
4. Each 5 holes in a single column marked F-G-H-I-J are wired together.
5. If you desire to have 10 holes in a single column (A-B-C-D-E-F-G-H-I-J) wired together, you must place a jumper wire from E to F in the desired column.
6. Place IC chips with their pins in Rows E and F, and so that the IC's +Vcc pin is in the row marked E. This will usually place the IC's power supply ground pin in the row marked F. [Short jumper wires from Row A to X, and from Row J to Y can then be used for the power supply connections.] If an IC such as the LM301 op-amp requires a -Vcc connection, the -Vcc lead from the power supply must be connected to the board at a convenient column, ABCDE or FGHJ.
7. IMPORTANT: Good practice in preparing jumper wires is to strip them about 5-6mm and make them about 1.5 times longer than their running length along the board. *Do not connect test leads to the legs of resistors, capacitors, transistors. You can make a bare wire U and put it into the board in the same contact column or row as the device you want to connect to. Neatness is exponential for getting correctly working circuits. Use pliers to work the leads into the board neatly without twisting the wire. Avoid jumping wires over circuit components.*

![Plan View of a Typical Circuit Board](image-url)
II RESISTANCE CODES

<table>
<thead>
<tr>
<th>COLOR</th>
<th>1st BAND</th>
<th>2nd BAND</th>
<th>3rd BAND</th>
<th>MULTIPLIER</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 Ω</td>
<td>± 1%</td>
</tr>
<tr>
<td>Brown</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>100 Ω</td>
<td>± 2%</td>
</tr>
<tr>
<td>Red</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1KΩ</td>
<td>± 3%</td>
</tr>
<tr>
<td>Orangs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10KΩ</td>
<td>± 5%</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100KΩ</td>
<td>± 10%</td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1MΩ</td>
<td>± 0.5%</td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10MΩ</td>
<td>± 0.25%</td>
</tr>
<tr>
<td>Violet</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>100MΩ</td>
<td>± 0.1%</td>
</tr>
<tr>
<td>Grey</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1GΩ</td>
<td>± 0.05%</td>
</tr>
<tr>
<td>White</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10GΩ</td>
<td>± 0.01%</td>
</tr>
<tr>
<td>Gold</td>
<td>10</td>
<td></td>
<td></td>
<td>0.1Ω</td>
<td>± 5%</td>
</tr>
<tr>
<td>Silver</td>
<td>11</td>
<td></td>
<td></td>
<td>0.01Ω</td>
<td>± 10%</td>
</tr>
</tbody>
</table>

The 4-bands resistors read A B C space D (±10% resistors) = AB×10^C Ω
The 5-bands resistors read A B C D space E (±1% resistors) = ABC×10^E Ω

The last band is the tolerance amount.
See Table above (taken from Electronic Express™)

II CAPACITORS

A Ceramic Disc Capacitor
An Electrolytic Capacitor (Note the +/- sign on its leads
These EXPLODE if wired opposite to the circuit voltage!)

Capacitors do not have color codes and can be confusing to read.
It is therefore best to measure them using the capacitance range of your digital multi-meter.

III OTHERS

We will list the details of diodes, transistors, IC Chips, etc in the exercise you will be doing.
EXP. 1.1 - DIGITAL OSCILLOSCOPE and FUNCTION GENERATOR FAMILIARIZATION

Digital Oscilloscope Setup.

The oscilloscope measures time dependent waveforms. You should read the manual and learn how to:

1. Set ground level (zero-Volts DC) of the scope and use the scope in AC (only) mode and DC (AC and DC offsets measured).
2. Be able to set the vertical scale in calibrated volts or relative volts.
3. Be able to use the trigger mode (Auto = repeated scan; Normal = only if an AC input is present) with the level and slope of the input wave form.
4. Be able to measure the period of an AC waveform and convert this to frequency.
5. Be able to measure the phase between two waveforms.

The function generator provides both DC and AC outputs. Learn how to set the amplitude and frequency of the wave form.
Measuring the phase difference between two waves.

The figure above shows two Sine Waves superimposed. The bold trace has an amplitude (indicated by A) of 1V, whereas the dotted trace has an amplitude of 2V. The period τ of both waves is 2milliseconds (1 wave cycle). Thus using $\tau = 1/f$, the frequency is 500Hz. The dotted trace is ahead of the bold trace, by a time (ΔT) difference of 0.33ms (i.e. where both traces rise and cross the 0V point). Noting that the t scale is linear in the relative phase of each wave, we can use the equation $\frac{\Delta T}{\tau} = \frac{\phi(\text{deg})}{360} = \frac{\phi(\text{rads})}{2\pi}$ and see the phase shift of the dotted wave is positive relative to the solid wave and 60°.

From figures like the one above, you should be able to determine the frequency, amplitude and phase differences for waves triggered on your oscilloscope. Note both above traces have zero DC volt offsets.

Q: How could you determine the phase difference if one of the traces had a non-zero DC offset?

1. Set up the circuit below with $C=0.1\mu F$ and $R=22k\Omega$ using a sine wave output. Make sure you ground the oscilloscope. You will visit this circuit again in the next couple of labs.
High Pass Filter (EXP 1.1 for phase shift measurement). See also EXP 2.12.

Set your initial frequency f at 1 kHz and increase it to 5, 10, 30, 60 and 100 kHz.

a). Measure the phase ϕ between the input and output traces V_i and V_o. Is this positive or negative? Note the amplitude of V_i and V_o are not equal.

b). Plot the phase ϕ vs. the frequency f. What would you expect of the value of ϕ if $f \to \infty$?

c) Write up your results in a compact table.
THEVENIN'S THEOREM

A simple circuit consisting of a constant amplitude voltage, of magnitude \(V_{Th} \) (the Thevenin voltage), in series with a resistance \(R_{Th} \) (the Thevenin resistance) is the electrical equivalent of any linear active circuit, provided that:

\[V_{Th} = V_{oc} = \text{the open circuit terminal voltage (output current I } = 0 \text{ amps)} \]

\[I_{sc} = \text{the short circuit terminal current (terminal voltage V } = 0; I = I_{sc}) \] [This current is also called the Norton current in the Norton theorem.]

\[R_{Th} = \left| \frac{V_{oc}}{I_{sc}} \right| = \text{the magnitude of the (-) slope of the V-I graph.} \]

![Graph showing V_out vs. I graph with points and line segments illustrating V_{oc} = V_{Thevenin} and I_{sc}]

Figure: Thevenin equivalent circuit and Output Voltage (V) vs. Current (I) graph.

EXP. 1.2 THEVENIN EQUIVALENT CIRCUIT FOR FUNCTION GENERATOR

1. Connect the circuit as shown below. Make sure that the decade box shield is also grounded.
2. Set up the Waveform Generator with a zero DC offset and an 8V peak to peak (=4V amplitude) and 1kHz frequency (Period=1ms).

![Circuit Diagram](Image)

Circuit Diagram for Thevenin’s Equivalent circuit of the Waveform Generator. [Connect the oscilloscope to the decade box as arrowed to measure \(V_{out} \). \[I = \frac{V_{out}}{R_{LOAD}} \]]

2. Set up a suitable table for measured, and for calculated, data. Record all pertinent data - name, date, station, equipment information, etc., and measured data.
4. Note: Set the function generator for an 8.0 V peak-to-peak voltage (=4.0 V amplitude = V_{in}) is your value of V_{oc}. (The Digital Oscilloscope input resistance is 1M ohm, which draws negligible current, for our purposes.) This will use the full screen of the oscilloscope for maximum resolution. Keep the 8.0 V peak-to-peak output fixed as the frequency is varied during the complete course of this experiment, by making adjustments of the frequency generator output.

5. Set the decade resistor to at least 2,000 Ω. Do not at any time decrease the decade box resistance below 40 Ω. Then connect it to the function generator, using a second dual banana plug coaxial cable. This places the resistor in series with the Thevenin equivalent voltage and the Thevenin resistance of the function generator. It keeps the oscilloscope as a voltage measuring device, measuring the terminal voltage of the function generator.

6. Adjust the decade resistor to a value that makes V = V_{out} = 4.0 V, equal to one-half of the open-circuit voltage. Justify in mathematical form that this value of the decade resistor equals the Thevenin resistance. [This measurement method is a quick way to measure the Thevenin resistance provided that the circuit is capable of delivering the current that is required at this load resistance.]

7. To prove that the function generator is a linear device, take data for a terminal voltage-versus-current graph.

Suggestion: Take data for peak-to-peak voltages equal to 7.0 to 1.0 volts, in steps of 0.5 V adjusting the decade (load) resistance R_{LOAD} to give each of these values. Use the data to calculate respective currents I with I = V_{out}/R_{LOAD}. Aim to get about 8 to 10 points equi-spaced as possible in V_{out}.

8. Plot the voltage-current graph, current on the horizontal axis. By drawing two estimated 1-standard deviation separated slopes on your data, calculate the slope for this graph and the rough "eyeballed" error on the slope. Determine the Thevenin resistance from the slope and its "eyeballed" error.

9. Include the Thevenin circuit with your data.

10. Write a summary of your experiment. See Instructor for guidelines.

Final comment: This experiment shows you the important fact that the output voltage amplitude of your function generator depends upon how much current your circuit draws from the generator. For DC circuits, the current will change only when the load resistance is changed. For AC circuits, the load impedance often depends upon frequency, and so frequency changes, alone, will cause the function generator output current and output voltage to change. You are, therefore, cautioned to monitor the function generator output voltage in all experiments.
QUESTION: How do I write up my Lab. Report?

A SUGGESTED FORMAT FOR YOUR LABORATORY WRITE-UP:

8.1 **Aim.** State the aim of the experiment in brief and clear terms. Do not get personal. Stay objective.

8.2 **Setup/Apparatus.** Describe the equipment used; a diagram, carefully/clearly labeled, easily read and not crunched-up diagram is worth a thousand words.

8.3 **Method.** Describe very briefly what you did. Pay attention to things you worked out additional to the laboratory handbook.

8.4 **Measurements/Observations/Analysis.** Discuss the data acquired and tabulate/plot them. Use your unbounded investigative spirit and creativity. Label clearly your figures and graphs *(do not miss out the x and y coordinates’ variables and dimensions).*

8.5 **Conclusions.** Discuss your conclusions. This should be the most creative part of the whole exercise. It should elaborate on the overall discussions of your results from an objective viewpoint, errors and points of argument concerning validity of hypotheses you made, in the earlier sections of this write-up. Discussions of errors and improvement of experiments go here. Be creative! This is the part that demonstrates to the reader how much you understood about the laboratory exercise. It will the part I will judge you the most. Remember to be objective and not personal and subjective. You should not write superfluous statements as “I really liked this experiment” or “This was an experiment I hated” or “I was not feeling very well during this experiment”. You can say things like “This experiment could be greatly improved by ..” and then elaborate on your creative ideas to do the improvement. Observations that look interesting (even better if accompanied with explanations) should be included. Or “We observed this and it could be explained by this, giving a possible explanation of your observation during the course of your experimental exercise. Impress the reader!

8.6 Finally, try to be as neat as you possibly can. If you make a mistake, just draw a line through the mistake. Do not try to erase it. Your lab write-up should be mainly in ink and not pencil (except for the graphs, drawings, etc).
4. Note: Set the function generator for an 8.0 V peak-to-peak voltage (\(=4.0\) V amplitude=\(V_m\)) is your value of \(V_{oc}\). (The Digital Oscilloscope input resistance is 1M ohm, which draws negligible current, for our purposes.). This will use the full screen of the oscilloscope for maximum resolution. Keep the 8.0 V peak-to-peak output fixed as the frequency is varied during the complete course of this experiment, by making adjustments of the frequency generator output.

5. Set the decade resistor to at least 2,000 \(\Omega\). Do not at any time decrease the decade box resistance below 40 \(\Omega\). Then connect it to the function generator, using a second dual banana plug coaxial cable. This places the resistor in series with the Thevenin equivalent voltage and the Thevenin resistance of the function generator. It keeps the oscilloscope as a voltage measuring device, measuring the terminal voltage of the function generator.

6. Adjust the decade resistor to a value that makes \(V=V_{out}=4.0\) V, equal to one-half of the open-circuit voltage. Justify in mathematical form that this value of the decade resistor equals the Thevenin resistance. [This measurement method is a quick way to measure the Thevenin resistance provided that the circuit is capable of delivering the current that is required at this load resistance.]

7. To prove that the function generator is a \textit{linear} device, take data for a terminal voltage-versus-current graph.
 Suggestion: Take data for peak-to-peak voltages equal to 7.0 to 1.0 volts, in steps of 0.5 V adjusting the decade (load) resistance \(R_{LOAD}\) to give each of these values. Use the data to calculate respective currents \(I\) with \(I=V_{out}/R_{LOAD}\). Aim to get about 8 to 10 points equi-spaced as possible in \(V_{out}\).

8. Plot the voltage-current graph, current on the horizontal axis. \textit{By drawing two estimated 1-standard deviation separated slopes on your data, calculate the slope for this graph and the rough "eyeballed" error on the slope.} Determine the Thevenin resistance from the slope and its “eyeballed” error.

9. Include the Thevenin circuit with your data.

10. Write a summary of your experiment. See Instructor for guidelines.

\textbf{Final comment:} This experiment shows you the important fact that the output voltage amplitude of your function generator depends upon how much current your circuit draws from the generator. For DC circuits, the current will change only when the load resistance is changed. For AC circuits, the load impedance often depends upon frequency, and so frequency changes, alone, will cause the function generator output current and output voltage to change. You are, therefore, cautioned to monitor the function generator output voltage in all experiments.
QUESTION: How do I write up my Lab. Report?

A SUGGESTED FORMAT FOR YOUR LABORATORY WRITE-UP:

8.1 **Aim.** State the aim of the experiment in brief and clear terms. Do not get personal. Stay objective.

8.2 **Setup/Apparatus.** Describe the equipment used; a diagram, carefully/clearly labeled, easily read and not crunched-up diagram is worth a thousand words.

8.3 **Method.** Describe very briefly what you did. Pay attention to things you worked out additional to the laboratory handbook.

8.4 **Measurements/Observations/Analysis.** Discuss the data acquired and tabulate/plot them. Use your unbounded investigative spirit and creativity. Label clearly your figures and graphs (*do not miss out the x and y coordinates' variables and dimensions*).

8.5 **Conclusions.** Discuss your conclusions. This should be the most creative part of the whole exercise. It should elaborate on the overall discussions of your results from an objective viewpoint, errors and points of argument concerning validity of hypotheses you made, in the earlier sections of this write-up. Discussions of errors and improvement of experiments go here. Be creative! This is the part that demonstrates to the reader how much you understood about the laboratory exercise. It will the part I will judge you the most. Remember to be objective and not personal and subjective. You should not write superfluous statements as “I really liked this experiment” or “This was an experiment I hated” or “I was not feeling very well during this experiment”. You can say things like “This experiment could be greatly improved by ..” and then elaborate on your creative ideas to do the improvement. Observations that look interesting (even better if accompanied with explanations) should be included. Or “We observed this and it could be explained by this, giving a possible explanation of your observation during the course of your experimental exercise. Impress the reader!

8.6 Finally, try to be as neat as you possibly can. If you make a mistake, just draw a line through the mistake. Do not try to erase it. Your lab write-up should be mainly in ink and not pencil (except for the graphs, drawings, etc).
EXP 2. RC CIRCUITS

Introduction
EXP. 2.1 deals with RC circuits that are driven by periodic waveforms: sine waveforms for the filter circuits, and sine, square and triangle waveforms for the integrator and differentiator circuits. EXP. 2.2 deals with RC circuits when they are subject to sudden changes in input voltages, resulting in transient effects that die out rapidly with time.

Discussion of EXP. 2.1 experiments
Linear analog circuits are often driven by sinusoidal voltages or by other periodic voltages (which by the Fourier series theorem are a linear summation of sinusoidal voltages of many different harmonic frequencies). In such circuits, either by design or by necessity, RC filters are used to eliminate (or enhance) input voltages of selected frequencies. Principal types of filters are:
1. High pass filters: those that pass all frequencies higher than a crossover frequency, which is also, called the cut-off frequency.
2. Low pass filters: those that pass all frequencies lower than a crossover frequency.
3. Band pass filters: those that pass a range of frequencies between a lower cut-off frequency and a higher cut-off frequency. The pass band may be quite wide, or quite narrow. [We also have notch filters that pass all frequencies except for a narrow band of frequencies.]

There are two properties of filters that are of particular importance in electronic circuits:
1. The attenuation of the filter as a function of frequency, usually expressed in decibels (dB). A passive filter usually (but not always) has an attenuation:
Amplitude: dB=20 log \(|V_o/V_i|\) and
Power: dB=10 log \(|P_o/P_i|\) and
equal to 0dB in the center of the pass band (i.e. no attenuation).
Outside the pass band the attenuation rapidly increases for frequencies beyond the crossover frequency. Here "o" and "i" subscripts appertain to the output and input.
The phase shift of the output voltage, with reference to the phase of the input voltage, as a function of frequency. This property's importance will appear later when we discuss feedback circuits.
In our experiments, we shall measure both attenuation and phase shift.
Experiment instructions

1. Low pass and High pass filters.

Presently, we define a variable, \(f \), by \(f = b f_c \). Here \(f \) is the test frequency, and \(f_c \) is the crossover frequency, where the high pass and low pass filters "cross" i.e. \(f_c = 1/2\pi RC \).

1.1 For each filter, measurements are to be made for \(b = .005, .01, .05, .1, 5, 10, 50, 100 \) and 500. The function generator frequency setting for \(f_c \) is found by adjusting the frequency for attenuation \(\text{dB} = 20 \log \frac{|V_0/V_i|}{|V_0/V_i|} = -3.010 \text{ dB} \) or \(V_0/V_i = \frac{1}{\sqrt{2}} = 0.7071 \). Thereafter, frequency changes are to be made only by for \(b = .01, .1, 1, 10, 100 \) and then setting the frequency 5\(x \) on the waveform generator and repeating for \(b = .005, .05, \) etc..

1.2 A table of data is to be compiled having columns for \(\log b \), peak-to-peak voltages for \(V_i \) (input voltage) and \(V_o \) (output voltage), attenuation = 20 \(\log \frac{|V_0/V_i|}{|V_0/V_i|} \), and (see below) both measured and theoretical values of the phase shift \(\phi \), in degrees. Measure peak-to-peak voltages on the Digital Oscilloscope.

1.3 Phase shift is to be measured on the Oscilloscope by using the linearity of the time scale and 1 periodic waveform = 360 degrees as explained and worked out in EXP 1.1.

1.4 A graph is to be plotted of attenuation (vertical axis) and \(\log b \) (horizontal axis). Use a scale of 1 inch = 20 dB of attenuation, and a scale of 1 inch = a change of 1 in \(\log b \). (The expected type of graph [log-lin] will be discussed by your instructor. Log-lin paper should be available for you to use.)

1.5 In your summary of each part of the experiment, you should comment on how closely your data conform to the theoretical roll off of 20 dB/decade of frequency, or the equivalent, 6 dB/octave of frequency. You also should comment on the degree of agreement between theoretical and measured values of phase shift; note especially whether the phase shift is negative or positive.

EXP. 2.11 Pertinent details for the Low Pass Filter

Use \(R=10k\Omega \) and \(C=0.01\mu F \).

\[
\begin{align*}
\text{Ch 1} & \quad \text{Oscilloscope} = V_i \\
\text{Waveform Generator} & \quad V_n \\
\text{Ch 2} & \quad \text{Oscilloscope} = V_o \\
R & \\
\end{align*}
\]

\[
\begin{align*}
b &= \frac{f}{f_c} \\
f_c &= \frac{1}{2\pi RC} \\
\left|\frac{V_o}{V_i}\right| &= \frac{1}{\sqrt{b^2 + 1}} \\
\phi &= \tan^{-1} b
\end{align*}
\]

EXP. 2.12 Pertinent details for the High Pass Filter

Use \(R=22k\Omega \) and \(C=0.01\mu F \).

\[
\begin{align*}
\text{Ch 1} & \quad \text{Oscilloscope} = V_i \\
\text{Waveform Generator} & \quad V_n \\
\text{Ch 2} & \quad \text{Oscilloscope} = V_o \\
R & \\
\end{align*}
\]

\[
\begin{align*}
b &= \frac{f}{f_c} \\
f_c &= \frac{1}{2\pi RC} \\
\left|\frac{V_o}{V_i}\right| &= \frac{1}{\sqrt{(1/b^2) + 1}} \\
\phi &= \tan^{-1}(1/b)
\end{align*}
\]
2. Differentiator and Integrator circuits. These are, simply, the RC filter circuits already tested, but operated at a single frequency at which the attenuation has rolled off by at least 20 dB, i.e. where the output voltage is greatly diminished (a grotty area to be in!).

2.1 You are to use the frequency for which the roll-off (i.e. the attenuation) equals 20 dB. At this single frequency, you are to observe and sketch quantitatively the input and output waveforms using, sequentially, the triangle waveform, the square waveform, and then the sine waveform of the function generator.

2.2 In each case, use an input waveform equal to 6.0 V peak-to-peak. Note the peak-to-peak voltage of the output voltage and its phase relationship, relative to the input voltage. [Be sure to use EXT TRIGGER mode with the input voltage as trigger source.]

2.3 Determine in each case what the output waveform should be (in waveform, amplitude and phase), by taking the derivative or the integral (as the case may be) of the input voltage and substituting it into the appropriate theoretical equation.

2.4 In your summary for each circuit, comment on the agreement, or lack of agreement, of experiment with theory.

EXP. 2.13. Low Pass Filter as an Integrator (when $b > 10$)

$$ b = \frac{f}{f_c}; \quad f_c = \frac{1}{2\pi RC}; \quad \text{consequently} \quad V_o = \frac{1}{RC} \int V_i dt$$

(see EXP 2.11)

EXP. 2.14. High Pass Filter as a Differentiator. (when $b < 0.1$)

$$ b = \frac{f}{f_c}; \quad f_c = \frac{1}{2\pi RC}; \quad \text{consequently} \quad V_o = RC \frac{dV_i}{dt}$$

(see EXP 2.12)

3. Band pass filter. Only if you have time, make frequency and phase shift measurements for the given band pass filter. This one is, simply, a high pass RC filter of lower cross-over frequency, followed by a low pass RC filter of higher cross-over frequency. This results in a band pass filter with cut-off frequencies that are, approximately, equal to the individual cutoff frequencies. ("Approximately" is used because the behavior of the first filter is modified by the loading on it produced by the second filter.)

NOTE: This kind of band pass filter is not used when precise band width is desired, due to the lack of precision of common resistors and capacitors. When a very narrow band pass filter, centered on a precise frequency is desired (as is the case in radio and television receivers), circuits utilizing the resonance properties of inductance-capacitance circuits are used. 3.1 Unlike the previous filter circuit measurements, here you should make measurements in the range of attenuation between values of about ~30 dB at each edge of the pass band, with about 3 measurements per decade at evenly spaced (log f) values, instead of only one measurement per decade, as before. 3.2 A limited number of phase shift measurements should be made; i.e., not made at every frequency for which attenuation is measured. A total of about 6-7 points should suffice.

3.3 Note that the attenuation, even at the center of the pass band, is less than 0 dB, i.e. you still attenuate at the center of the band pass.
Use $C_1 = C_2 = 0.01\,\mu F$; $R_1 = 10\,k\Omega$ and $R_2 = 5.7\,k\Omega$.

EXP. 2.15 The Simple Band Pass Filter.
Show that the maximum band pass frequency f_b for the resistances R_1, R_2 and capacitances C_1, C_2 (above) is given by $f_b = \sqrt{1/(2\pi R_1 C_1 2\pi R_2 C_2)}$.

EXP. 2.2 Transient response of RC circuit.
The texts and the class lecture give the theory for this experiment. The experimental procedure permits you to:
2.21 Verify the exponential nature of the transient voltage equations, for V_R and V_C.
2.22 Measure the RC time constant: (a) using the graph of $\log V$ versus t, and (b) by the quick method of the time taken for the relative decay of V to V/e ($e=2.718$) using the oscilloscope exponential trace.
2.23 Sketch the waveforms for (a) a square waveform input, (b) V_R and (c) V_C.

Use $R_1 = 10\,k\Omega$ and $C_1 = 0.01\,\mu F$.

The Transient Circuit with a Low Pass Setup.

The Transient Circuit with a High Pass Setup.
The Transient response experiment and the report
1. Derive the transient equations for \(V_C \) and \(V_R \), using Laplace transforms or solutions of their first order differential equation. (Set impulse \(V = V_0 \) at \(t=0 \) as a boundary condition)
2. Using a 0-V to 4-V input square waveform, via the DC oscilloscope inputs, and EXT TRIG with the square waveform as source and with + slope, separately display and carefully sketch: the square waveform, \(V_R \) and \(V_C \). (Superpose the square waveform and \(V_R \) on one graph, and immediately below it with the same time scale, superpose the square waveform and \(V_C \) on one graph.) Use \(R = 10k \) and \(C = 0.01 \) uF. Make the square waveform period equal to about 4 \(RC \).
3. Measure the time constant, \(RC \), by the quick method.
4. Following lecture instructions, display the \(V_R \) positive spike so that \(V_{RO} = 8.0 \) V and so that \(V_R \) decreases to about \((1/e)V_{RO}\) at about 2/3rds of the total calibrated time sweep. Record values of \(V_R \) and \(t \) at each major sweep-time division (each cm line on the screen). Verify the exponential equation by making a semi-log plot of the data. Determine the RC time constant from this graph. Ask how to do this if you have forgotten how. [Note well: RC is not equal to the slope of this graph.]
5. Write a short summary of this experiment.
EXPERIMENT NO. 3.1. DIODES USED AS RECTIFIERS

Please Read: For every experiment, including each modification of a circuit, you are to make a labeled, carefully drawn sketch of the input voltage waveform and, below it, a sketch of the output voltage waveform. The time axis scales must be the same for both sketches, so that the waveforms can be visually compared at each same time instant. *The Oscilloscope inputs are to be DC; the sketches must show the zero (or ground) voltage.* The voltage scale must be carefully labeled. Maximum and minimum waveform voltage values must be shown by written values placed on the graphs, with arrows pointing to the corresponding positions on the graph. Any significant time interval values - such as time intervals between waveform zero-crossing pointy - should be noted below each sketch. Graphs must be properly labeled with name of circuit or portion thereof, frequency of waveform, and any other pertinent information. Be careful to show the voltage values at which the diodes, when forward biased, begin to conduct. *Summarize the sketches for each numbered experiment, with comments on what you have learned from your observations and your answers to any questions that may have been asked.*

Important Primer: A diode forward-conducts from Anode to Cathode with positive current along the “arrow”. A forward 0.5-0.7V diode-drop volts is needed to push current thru’ the diode.

Forward Current →

![Diode Symbol]

Anode

Cathode

Diode placed in same orientation as symbol

1. **Half-Wave Rectifier:**

In order to show that the forward and reverse resistances of the diode are quite different, measure (and record, together with the resistance scale used) the forward and reverse resistance of your diode using your multimeter.

The circuit diagram follows:

![Circuit Diagram]

For R use a 1% 1000Ω resistor. Sketch carefully the input and output voltage (look for “gaps” between them). What are these gaps due to? What (at least) is the peak inverse voltage (PIV) of the diode?
2. Full-Wave Bridge Rectifier

Note: The terminal marked '+' on the diode bridge IC VE48 rectifier is connected to the ungrounded output terminal; the diagonally opposite VE48 terminal is connected to output ground; and the remaining terminals are connected to the transformer secondary terminals. For R, use a 1% 1000-ohm resistor. Sketch carefully V_{in} and V_{out}. Warning: Do not measure V_{in} and V_{out} simultaneously as you will compromise the operation of the VE38 bridge rectifier and blow it! Measure V_{in} first (sketch it) and then (after disconnecting the oscilloscope completely (including ground) measure V_{out}.

3. Full-Wave Bridge Rectifier with Voltage Regulator

In the following diagram, you are to add to the circuit of part 2, at its output terminals, the two capacitors and the voltage regulator, but remove R. Note that the waveforms of interest are at the input and output terminals of this last portion of the circuit, as shown below. Sketch V_{in} and V_{out}. Use Oscilloscope AC-input in order to see the output ripple voltage clearly. Again do not measure V_{in} and V_{out} simultaneously. Current is limited to 100mA DC. $C_1=100uF$; $C_2=0.01uF$.

4. Full-Wave Center Tap Rectifier with Voltage Regulator
is the previous circuit, with the bridge removed and the center tap of the step down transformer used. Here you only get half the step down voltage, but need only to use two diodes. All components are the same as for the full wave bridge rectifier.

5. Voltage Doubler Circuit
With this circuit, the DC output voltage is approximately doubled, compared to the DC voltage of Parts 2 and 3. A voltage regulator could also be added here, but we will not do this. Sketch V-input and V-output. You may have to use Oscilloscope AC-input in order to see the output ripple voltage clearly. Add in the diagram Vin and Vout.

\[R_1 = R_2 = 1M\Omega; \quad C_1 = C_2 = 0.1\mu F \]

6. Write a summary of these experiments, comparing all the rectifier circuits and filter circuits.
EXPERIMENT 3.2. SOME USEFUL DIODE CIRCUITS

3.21 Voltage-current characteristics of diodes
Using the Oscilloscope X-Y mode, you are to display the diode current (with forward current as +Y-axis) versus the diode voltage (with forward voltage as +X-axis). In order to do this: Wire the circuit (first, for the signal diode, 1N4002; then, for the 3.3-V zener diode, 1N4728). Note that the Oscilloscope ground connection is between the diode and the current-measuring resistor, R. As a result, a phase shift of 180° is introduced. Take R = 1kΩ, 1% to give you a direct reading of current: 1mA = IV on the Oscilloscope. Set your Oscilloscope Ch 2 INVERT-NORMAL control to INVERT the Y-axis so as to remove the 180-degree phase shift.

![Circuit for Diode Characteristic Curves.]

2. Use a 1 kHz sine waveform. With both inputs grounded, place the Oscilloscope spot at the center of the screen. Using DC inputs, increase the waveform amplitude, and note the effect on the trace.

3. When you have a good trace for your I versus V curve, carefully sketch the curve on your report paper. Be sure to label the curves completely. Note all important numerical values on the curves. (You will have two curves: one for the signal diode, and one for the Zener diode.)

4. Without taking data, note the effect of increasing the sine frequency to 10 kHz, and then to 100 kHz. Why does the diode loop “open up” at higher frequencies? (Hint: Lookup: “hysteresis loop”).

5. Write short summary of your observations. In the remaining experiments, you will observe the input/output waveforms of several diode circuits.

Special instructions for these experiments:
For every experiment, including each modification of a circuit, you are to make a labeled, carefully drawn sketch of the input voltage waveform and, below it, a sketch of the output voltage waveform. The time axis scales must be the same for both sketches, so that the waveforms can be visually compared at each same time instant. The Oscilloscope inputs are to be DC; the sketches must show the zero (or ground) voltage. The voltage scale must be carefully labeled. Maximum and minimum waveform voltage values must be shown by written values placed on the graphs, with arrows pointing to the corresponding positions on the graph. Any significant time interval values - such as time intervals between waveform zero-crossing points - should be noted below each sketch. Graphs must be properly labeled with name of
circuit or portion thereof, frequency of waveform, and any other pertinent information. Be careful to show the voltage values at which the diodes, when forward biased, begin to conduct. Immediately following the sketches for each numbered experiment, put your comments on what you have learned from your observations and your answers to any questions that may have been asked. After completing the sketches for each part of the experiment, explain briefly how the diodes) modify the input waveform.

3.22 Clamp Circuit.
In the following circuit the output voltage is clamped to approximately zero volts. Observe and sketch the input and output waveforms (use sine waveform at 1 kHz at 10 Vpp). Use diode 1N4002, C = 0.10 uF. Repeat your observations (and sketches) with the diode polarity reversed.

![Clamp Circuit (1N4002 diode)](image1)

![Clipper Circuit (1N4728 Zener diodes)](image2)

3.23 Clipper Circuit.
Zener diodes can be used to clip tops and/or bottoms of waveforms and prevent overload in circuits following them. The clipper circuit (above) will clip a sine waveform symmetrically. Use two 1N4728 (3 V) Zener diodes, R = 10kΩ. Make sketches for 4Vpp input voltage, and also for 10Vpp (or larger, if your signal generator permits). [Vpp means "peak-to-peak voltage."]. Where would you find such a circuit useful?

3.24 Limiter Circuit.
Signal diodes or Zener diodes can be used to limit the clipping voltages to the forward diode voltage drop (about 0.6 V for Si diodes). The circuit is shown below. Use either two 1N4002 diodes or two 1N4728 diodes. Why should you expect no difference in output waveform, using either type of diode? Use R = 15kΩ. Make observations (and sketches) for input sine waveform of 10 to 15 Vpp. Note that the output waveform is almost a square waveform. The small peak-to-peak output voltage is sufficient to drive a properly biased IC comparator. For driving other circuits, an amplifier can be used to increase the peak-to-peak voltage.
3.25 Frequency Meter.
The frequency meter circuit (above) converts the frequency of the input square waveform to DC current on an analog meter. Sketch input and output voltage waveforms at 1 kHz only. Plot a Cartesian graph of frequency versus ammeter current as abscissa.

Use two 1N4002 diodes, \(C_1 = C_2 = 0.1 \text{ uF} \). Measure \(I_{\text{out}} \) with a 0-50 \(\mu \text{A} \) or a 0-100 \(\mu \text{A} \) meter. Note that the diode \(D_1 \) is used to clamp the square wave to about zero volts. At a single frequency, check whether the amplitude of the input waveform changes the meter reading significantly. If it does, be sure to monitor the input waveform amplitude with the Oscilloscope and keep it constant while you make current-versus-frequency measurements.

Question: If it is necessary to keep the input waveform amplitude constant, how might you change the input portion of the circuit to keep the amplitude constant?

Question: For what range of frequencies do you find that the frequency is approximately proportional to the current?
EXPERIMENT 4. SOME USEFUL TRANSISTOR CIRCuits

Object:
To observe transistor function in the cutoff, linear and saturation regions.
To observe the input/output waveforms of some transistor circuits.
To measure low-frequency cutoff, input and output impedances of circuits.

Special instructions:

Use Engineer's Computation Pad sheets (National 42-583) for sketches and comments - one side of sheets only.
1. Copy each circuit on your paper.
2. Assemble each circuit in accord with the general instructions on measurement Procedures, EXP. 4 Appendix Page 4. Check your wiring carefully and set VCC power supply to correct voltage before attaching power leads to circuit board.
3. For every experiment, including each modification of a circuit, you are to make a labeled, carefully drawn sketch of the input voltage waveform and, below it, a sketch of the output voltage waveform.
3.1 The time axis must be the same for both sketches, so that the waveforms can be visually compared at each time instant.
3.2 The Oscilloscope inputs must be DC, unless otherwise specified; the sketches must show the zero (or ground) voltage.
3.3 The voltage and time scales must be carefully labeled.
3.4 Maximum and minimum voltages must be shown by written voltage values placed on the graphs with arrows pointing to the corresponding positions on the graph.
3.5 Any significant time interval values - such as time intervals between waveform zero-crossing points - should be noted below each sketch.
3.6 Graphs must be properly labeled: name of circuit, or portion thereof; frequency of waveform; and any other pertinent information.
Following the sketches) for each numbered experiment, place your comments on what you have learned from your observations and your answers to any questions that may have been asked. Carry out any other instructions given for an individual experiment.
After completing the operations specified for each part of the experiment, write a short summary.
EXP. 4.1 Transistor Characteristic Curves.

Only one laboratory station will be fitted out with a Cathode Ray Oscilloscope transistor curve tracer. You will have to share use of this CRO with others, so you may have to proceed with the remaining parts of the experiment while waiting to use the CRO. You are to display on the CRO the curves for the transistor (2N2222A, NPN) and sketch a reasonable facsimile on your paper. Label axes and curves. Determine from your sketch of the characteristic curves a value for the static forward current transfer ratio, $h_{FE} = I_C/I_B$. Mark the points on your sketch that you used to determine this parameter. h_{FE} is also called the static beta of the transistor. Using an arbitrary load resistance value, draw a load line on your graph. Show clearly on this line the cutoff point, the linear region and the saturation region. State the value of your load resistance.

No further comment or summary is required for EXP. 4.1. Description of transistor saturation

In most of our transistor circuits, the transistor is biased, and operated, so that the transistor is always between the saturation and the cut-off points. At both saturation and at cut-off, the collector current is no longer a linear function of the base current, and so these regions are avoided when linear amplification is desired. However, when current switching is desired, we deliberately drive the transistor from cut-off to saturation, and vice versa.

Saturation in an NPN transistor is defined as the condition of the transistor when the base current and the collector current combine in such a way as to cause the collector voltage to drop below the base voltage. In this state, the three inter-electrode voltages, V_{BE}, V_{BC} and V_{CE}, are all positive and all have values less than about one volt. Each of these voltages changes very little with large changes in I_B (base current) and I_C (collector current). [Such small inter-electrode voltage changes with changes in current are normally associated with forward-biased diodes in 2-terminal solid-state elements. Because of the internal structure of the transistor (very thin base thickness that separates the emitter and collector regions, and the different impurity doping of the emitter and collector regions), the similarity of inter-electrode behavior to diodes should not be pressed too far in attempts to explain the behavior of the transistor in saturation.]

In the saturation region, because of the insensitivity of the inter-electrode voltages to I_B and I_C changes, the magnitude of I_B is determined largely by its series resistor R_B and its voltage supply V_{BB} independent of the magnitude of I_C. In like manner, the magnitude of I_C is determined largely by its series resistor R_C and its voltage supply.

The 2N2222 transistor in the metal TO-18 (left) and plastic TO-92 package (right)
TO-18: looking at the pins from the bottom of the package, they are, clockwise, the emitter (1) where the tab sticks out, the base (2) and the collector (3).
TO-92: when looking at the flat face of the transistor, the leads are commonly configured from left-to-right as the emitter (1), base (2), and collector (3).
V\text{CC}' independent of the magnitude of I\text{B}. The parameter, h_{FE} = I_{C}/I_{B}, is of limited usefulness in the saturation region.

For a given saturation collector current, there are a wide range of possible base currents. When the transistor is about to switch out of saturation, the base current drops significantly while the base-collector voltage, V_{BC}, drops toward zero. This V_{BC} voltage decrease can be used to define, roughly (but usefully), the edge of the saturation region. For good switching action, we wish to have the saturation base current well away from this borderline value. A good rule of thumb is to have the base current for saturation about ten times its value near the edge of the saturation region. Determining this base current for the 2N2222A NPN transistor is an important goal of these measurements.

EXP. 4.2 Transistor switch circuits.

In the diagram at the right, we shall choose V_{CC} = 5.0 V (although much larger values could be used) in order to use the results in a later experiment. We choose the value of R_{C} = 220 ohm so that I_{C} = 25 mA and so that the power dissipated in R_{C} will be under 0.25 W, its rated wattage.

We can adjust I_{B} by changing either V_{I}, or by changing R_{B}. We elect to make V_{I} = 5.0 V and change R_{B} values. A 22k\Omega resistor is connected from the transistor base to ground so that the voltage divider it forms with R_{B} will eventually, during your measurements, bring the transistor out of the saturation region into the linear region.

Use 5\% resistors for your variable values of R_{B}, using only values equal to standard 5\% resistor values (1st 2 digits: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, 100). In taking data, skip every other standard resistance value.

Record in a table the measured values of R_{B}, V_{BE} and V_{CE}, and the calculated values of V_{BC}, I_{B} and h_{FE}. Make a final column in your table for comment (on saturation, etc.). Take your first value of \(R_{B} = \text{(about) } 4R_{C} \). Increase the values R_{B}, taking data until the transistor enters the linear region.

CAUTION: Do not accidentally use a value of R_{B} smaller than specified above. If, for example, you should accidentally set the decade value to zero, excessive base current would damage the transistor.

3. From your data choose a value of standard resistor that would provide a good saturation value of I_{B} for use of this transistor in a switching circuit with V_{CC} = 5 V.

Your chosen value for R_{E} might not be good for a much larger value of R_{C}. Check this point, quickly and without taking a table of data, by substituting a value, R_{C} = 2200 ohm.

Verify the switching action of your transistor.
5.1 Assemble the circuit of the diagram below.

5.2 Before you connect your Function generator to the circuit, set the square waveform frequency at 1 kHz; set the offset and amplitude to give a 0 - 5 v amplitude, as observed on the Oscilloscope with CH. 1 DC input. Connect the function generator also to the external trigger. Adjust the trigger, on positive slope, to give a stable display. Use these Oscilloscope connections for the rest of this experiment. Make sure the two Oscilloscope traces are well-separate by setting the ground level on one higher than the other.

\[R_B = 1k\Omega \]

\[R_C = 220\Omega \]

\[V_{out} \]

\[V_{cc} \]

5.3 Complete the circuit assembly. Connect the transistor collector \((V_{out}) \) to Oscilloscope CH. 2 DC input.

5.4 Sketch the input (CH. 1) and the output (CH. 2) waveforms, thus verifying the switching action.

5.5 Observe output and input waveforms as you decrease the square waveform amplitude (adjusting the offset at the same time to keep the low voltage portion of the square waveform at zero volts). Note the input amplitude at which the switching action fails. (You should note that the zero level of the output rises as the transistor nears failure to go completely into saturation.)

5.6 Write a short summary of EXP. 4.2.

EXP. 4.3 Common-Emitter Follower Circuit

The emitter follower is designed to have a voltage amplification, \(A_v \), that is slightly less than unity. The circuit has the special properties of relatively high input impedance and low output impedance. Its purpose is to match the output impedance to the input impedance of the next circuit. The output impedance can be made lower than 50 ohms. [We will see a much improved version of follower circuit when we study OP-AMPS (operational amplifiers) later.] When the follower drives a low impedance circuit, it is both a current amplifier and a power amplifier. Discuss why the current amplification, \(A_i = i_o/i_i \), is equal to the ratio, \(R_i/R_o \) (see symbol table EXP. 4, Appendix Page 3).

1. Assemble and connect the circuit (shown at the right, next page) to the pre-adjusted power supply. Measure and record on your sketch, the voltages of the emitter, base and collector. If \(V_E \) is not equal to about \((1/2)V_{cc}\), consult your instructor.

2. Verify that, for a 1-kHz sine waveform, the voltage amplification is slightly less than unity; the phase shift is about zero degrees; and that, for too-large input voltage, the clipping of the sine waveform is about the same at the positive peak as at the negative peaks.
Carefully review your measurement procedures, EXP.4 Appendix Page 4.

3. Measure the input impedance of the circuit (see Appendix EXP.4).

4. Measure the output impedance of the circuit. Be careful not to exceed the power rating of the transistor.

5. Write a short summary of EXP. 4.3.

EXP. 4.4 Emitter-Coupled Amplifier

Assemble the circuit shown at the right. It is designed to have a voltage amplification, \(A_v = \frac{V_o}{V_i} = \frac{R_C}{R_E} \) = 10.

Apply power to the circuit, measure the DC voltages (to ground) of the emitter, base and collector. Record them on your circuit sketch. If these values are not reasonably close (10%) to those given here, consult your instructor before proceeding.

3. Circuit tests, using the Oscilloscope AC input leads:

3.1 Using a 1-kHz sine waveform and starting from a low value of amplitude, increase the amplitude of the input waveform until you observe distortion in the output waveform. Sketch the distorted waveform and comment on the cause of the distortion.

3.2 At an output amplitude equal to about 3/4ths of the amplitude where distortion sets in, observe and sketch the input and output waveforms.

3.3 Calculate the voltage amplification, \(A_v = \frac{V_o}{V_i} \). Calculate the percent error from the value \(A_v = 10 \). Calculate the propagated error to be expected in \(A_v (= \frac{R_C}{R_E}) \), assuming the 1% precision of the two critical resistors. Compare these two error calculations; comment on any difference between them.

3.4 Measure the input impedance of circuit (see Appendix Page 5 for details).

3.5 Measure the output impedance of circuit (See Appendix Page 6 for details).

Determine the frequency below 1 kHz at which the amplification decreases to 0.707I of the value of \(A_v \) at 1 kHz. This is the 3db low-frequency cutoff. (Note that the input RC circuit is a high-pass filter, and so produces this crossover.) Check whether there is any upper frequency crossover point, up to about 50 kHz.

5. Disconnect power. Remove the NPN transistor and replace it with the PNP transistor (2N2907A). Reverse the leads to the power supply. Reconnect the power, then do the following:

5.1 Measure and record the DC voltages of emitter, base and collector. The collector voltage should be approximately 1/2 of the power supply voltage. Is it? If not, consult your instructor before proceeding.

5.2 Repeat, for the PNP transistor the measurements and calculations carried out for the NPN transistor, in 3.2 and 3.3, above.

EXP. 4.5 Unity-Gain Phase Splitter & Unity-Gain Phase Shifter

1. **Unity-Gain Phase Splitter.** It is sometimes necessary to split single input voltage into two output voltages that are 180 degrees of phase apart. In the circuit at the right, you will note that \(R_C \) and \(R_E \) have the same value, and that, therefore, the voltage amplification at the collector is unity (\(A_v = R_C/R_E = 1 \)). Also, there is a 180-degree phase shift from the input signal. If we take a second output at the emitter, the voltage gain at that point will also be unity, but the phase is the same as for the input voltage. Thus, the two outputs (at emitter and at collector) have the same gain, but are 180 degrees out of phase. In normal usage, the two outputs are then applied to a following power amplifier, called a push-pull amplifier, which has particularly useful properties that we shall not discuss here.

Experimental measurements:

1.1 Assemble the circuit; check it for possible wiring errors; adjust the power supply voltage; then connect it to the circuit.

1.2 Measure, and record on your copy of the circuit, the quiescent voltages. Change the bias resistors if \(V_C \) and \(V_E \) are not within 1 V of design values.

1.3 Connect the emitter to CH. 1 AC input and to the external trigger. Connect the collector to CH. 2 AC input. Use a 5kHz sine waveform input to the circuit, of sufficient amplitude to provide output waveforms of amplitudes equal to about 2/3rds of the distortion amplitude. Adjust the trigger, on positive slope, for stable display.

1.4 Sketch CH. 1 and CH. 2 waveforms. Accurately determine the phase difference between the two waveforms and the ratio of their amplitudes. Comment (1.6, below) on any differences between these two measurements and theory predictions.

1.5 Measure the circuit input waveform amplitude. Then, calculate the voltage amplification for the collector output.

Comment (1.6, below) on any variation of \(A_v \) from unity.

1.6 Write a short summary of your phase-splitter circuit measurement.

1.7

2. **Unity-Gain Phase Shifter.** A minor addition to the phase-splitter circuit, just tested, converts it to a phase-shifter circuit. The circuit at the right is connected, as shown, to three points of the output of the phase splitter - the ground, the emitter and the collector. Because of the fact that both outputs have unity gain and the fact that the voltages across the capacitor, \(C_2 \), and the final resistor, \(R_S \), are 90 degrees out of phase with each other, the final output has also unity gain, and it has a phase (relative to the input voltage to the entire circuit) that is variable from about 5 degrees to about 175 degrees, as the value of \(R_5 \) is varied.

Experimental measurements:
2.1 Remove the Oscilloscope leads from the phase splitter. Leave the function generator connected. Add the phase shifting network to the circuit using jumper as shown below. Connect the input signal to Channel 1 AC input and to Oscilloscope external trigger. Connect the output signal to Channel 2 AC input.

\[V_{cc} = 15V \]

\[R_1 = 68k\Omega \]
\[R_A = 0.1uF \]
\[R_B = 47k\Omega \]
\[R_C = 4.7k\Omega \]
\[R_S = 50k\Omega \] potentiometer

\[C_2 = 0.01uF \]
\[V_{in} \]
\[V_{out} \]
\[V_{10} \]
\[V_{20} \]

2.2 Measure with the Oscilloscope, at a single frequency (say, 5 kHz), the minimum and maximum phase shifts, relative to the input signal, that you can produce with this circuit. Sketch the input waveform and the output waveforms for maximum and minimum phase shift.

2.3 Next, use the Oscilloscope in X-Y mode with \(V_i \) of the circuit displayed as X-axis and the \(V_o \) of the circuit displayed as the Y-axis. Set both Oscilloscope input attenuators to the same volts/div. Vary the resistor, \(R_S \), and observe the Oscilloscope trace. Describe what you see. Write the parametric equations for this trace. Sketch four distinctly different traces, using different \(R_S \) values.

2.4 Discussion: Draw the phasor diagram (see texts on the phase splitter and your text for discussion of these diagrams and below) for the final RC circuit. Use it to show that the output gain is unity, regardless of the amount of phase shift [Passive phase shifters, using only resistors, capacitors and/or inductors can be designed, but most of these have the disadvantage that their output voltage varies with the amount of phase shift].

2.5 No additional summary is required for the phase shifter circuit.

Geometrical representation of the Phase Shifter circuit. Derive a set of equations to calculate the phase shift \(\phi \) from values of the frequency, \(C_2 \) and \(R_S \) and show that at half-point on \(R_S \) the phase shift you calculate closely equals the value of \(\phi \) measured.
APPENDIX EXPERIMENT 4

Absolute Maximum Ratings of the NPN silicon 2N2222A transistor

Each transistor type has limitations on voltages, current and power dissipation that cannot be exceeded without permanent damage to the transistor (and quite likely, damage to associated circuit components). These limitations are called absolute maximum ratings, a phrase that has obvious meaning. The following are taken from the manufacturer's data sheets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector-base voltage (breakdown)</td>
<td>75 V</td>
</tr>
<tr>
<td>collector-emitter voltage (breakdown)</td>
<td>40 V (IC = 0-500 mA, IBE = 0)</td>
</tr>
<tr>
<td>emitter-base voltage (breakdown)</td>
<td>6 V</td>
</tr>
<tr>
<td>continuous collector current</td>
<td>800 mA</td>
</tr>
<tr>
<td>continuous power dissipation</td>
<td>500 mW (@ 25°C free air temp.)</td>
</tr>
<tr>
<td>continuous power dissipation</td>
<td>1800 mW (@ 25°C CASE temp.)</td>
</tr>
<tr>
<td>operating collector junction temp.</td>
<td>-65 to 175°C</td>
</tr>
<tr>
<td>soldering) lead temperature</td>
<td>230°C (1/16" from case for lOs)</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings of the PNP silicon 2N2907A Transistor (PNP)

Each transistor type has limitations on voltages, current and power dissipation that cannot be exceeded without permanent damage to the transistor (and quite likely, damage to associated circuit components). These limitations are called absolute maximum ratings, a phrase that has obvious meaning. The following are taken from the manufacturer's data sheets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector-base voltage (breakdown)</td>
<td>-60 V</td>
</tr>
<tr>
<td>collector-emitter voltage (breakdown)</td>
<td>-60 V (IC =0-100 mA, IBE =0)</td>
</tr>
<tr>
<td>emitter-base voltage (breakdown)</td>
<td>-5 V</td>
</tr>
<tr>
<td>continuous collector current</td>
<td>-600 mA</td>
</tr>
<tr>
<td>continuous power dissipation</td>
<td>400 mW (@ 25°C free air temp.)</td>
</tr>
<tr>
<td>continuous power dissipation</td>
<td>1800 mW (@ 25°C CASE temp.)</td>
</tr>
<tr>
<td>operating collector junction temp.</td>
<td>-65 to 200°C</td>
</tr>
<tr>
<td>(soldering) lead temperature</td>
<td>230°C (1/16" from case at lOs)</td>
</tr>
</tbody>
</table>
MEASUREMENT OF INPUT IMPEDANCE, OUTPUT IMPEDANCE, VOLTAGE AMPLIFICATION

This discussion is given in the context of measuring the input impedance, output impedance and voltage amplification of the emitter follower circuit, for which, destruction of the transistor by heat is easily possible if precautions are not taken, as discussed below. The methods given can be adapted to other amplifier circuits with minor changes.

Measurement Procedures

The measurements must be carefully done, with care being given to the proper procedure to use in order to avoid serious errors. Refer to basic diagrams on Appendix Page 9. Specifically, the following must be done:

Circuit assembly: circuits are to be assembled on the circuit board so that the layout of parts, the internal connections, and the input and output portions of the circuit are readily visible. Attention is to be given to the following:

1.1 ALL ground connections are to go to the bottom row of the board.
1.2 ALL Vc, connections are to go to the top row of the board.
1.3 Jumper wires are to be used to bring connections to circuit elements from awkward locations to other locations that will clearly permit a left-to-right sequence of circuit element input-to-output juxtaposition.
1.4 Jumper wires and bare-wire terminals are to be provided for the proper location and attachment of all external leads - power supply leads at top and bottom of board, input voltage leads at left side of board, Oscilloscope lead from input at left of transistor, Oscilloscope lead from output at right of transistor.
1.5 Measurements are to be made in such manner as to eliminate the high-pass filter effects of capacitors, unless you are instructed otherwise.
1.6 Measurements are to be made so as to eliminate the effects due to the internal resistance of the function generator.
1.7 To show that the above factors have been eliminated, the values of Av, Ri and R0 measured at 1 kHz and 10 kHz are to be compared.

2. Input resistance, Ri, is to be measured with no external load resistor, RL, connected to the circuit.

2.1 The input voltage, vi, applied to the circuit is to be measured with the Oscilloscope AC input terminal connected directly to the base of the transistor, following the input capacitor.
2.2 The input voltage, vi, is to be limited to 0.100 Vpp. The function generator amplitude may need adjustment to keep vi at a single value in all measurements. (This low value of input voltage will result in reasonable power dissipation in the transistor, as will be discussed below.)
2.3 In order that unwanted feedback from output to input be avoided, do not use the decade box in measuring the input or output resistance. Instead, use one of the 1% resistors (10, 100, 1k, 10k or 100k ohm, chosen to be of the order of the expected Ri), properly mounted on the circuit board. The input resistance can be calculated from this resistance value, Rs, and the measured values of input voltage, vs, and circuit input voltage, vi, as will be described below. To further reduce unwanted feedback, use shielded leads for all external connections to the circuit.
2.4 If you note a high frequency oscillation of the circuit (which is due to positive feedback), connect a small capacitor (100 pF to 470 pF) from the input terminal of the circuit to ground. This will short out this high frequency oscillation. It may also be necessary (especially while measuring the output resistance) to connect another small capacitor between the output
terminal and ground. These capacitors would not normally be necessary in an operating circuit because usually there are no external leads attached to cause trouble.

Output resistance must be measured, with techniques that do not produce excessive heat in the transistor. Instructions 2.1, 2.2, 2.3 and 2.4 (above) are to be followed, with the exceptions and additions noted below:

3.1 Two important points to be noted are:

3.11 The quiescent (no input voltage) collector current of the transistor most not be changed during the measurements. This is accomplished by placing a large capacitor (47 μF, or larger) in the output circuit to block flow of DC current into the load resistor, which is to be added in the measurement if the output resistance. Failure to do this will surely result in the heat destruction of the transistor. The capacitor and the load resistor (which will be of order of 68 ohms) form a high-pass filter; for this reason, the output capacitor must be much larger than the capacitor used for a similar purpose in the input to the circuit.

3.12 The output AC voltage must be kept low in order not to produce excessive AC power loss in the transistor. Maintain the input 14C voltage at no more than 0.100 Vpp. This precaution would not be necessary if you were to use a power transistor (rated at about 10 W), as would be used in a circuit designed to operate at maximum voltage output. Your transistor is rated only for 500 mW!

3.2 As was stated for input resistance measurements (see above), you are not to use the decade box for the load resistance; instead, use one of the 1% resistors, properly mounted on the circuit board. Choose a load resistor that produces an appreciable decrease in output voltage, in order that the measurements be meaningful. Also, you are to use AC input to the Oscilloscope and shielded external leads. Connect the Oscilloscope to the circuit so as to eliminate the effects of the two (input, and output) high-pass filters.

3.3 Proceed as follows:

3.31 Disconnect the ungrounded power supply lead to avoid damage to the transistor while you make circuit changes.

3.32 Mount the output capacitor, C2, which is of electrolytic type on the board, with its marked plus (+) terminal connected to the transistor emitter, to provide for correct capacitor DC polarity.

3.33 Set the function generator frequency to 1 kHz and the amplitude to give the vi value you wish to use for output resistance measurements. 3.34 Without the load resistor, RL, in the circuit, read and record the values of vi and vo (= voc, the Thevenin voltage for the output circuit).

3.35 Insert the jumper (see circuit diagram) that connects the load resistor, RL, into the output circuit. If necessary, adjust the function generator amplitude to restore vi to the selected value. Read and record vi and vo.

3.36 Calculate R0, using the formula given with the circuit diagram.

3.4 Repeat these measurements to get a value for R0 at 10 kHz.

3.4.1 Compare your two values for R0. Explain any significant difference in the two values.

3.4.2 Does the impedance of capacitor, C2, at either frequency, introduce a significant error in your measurement of R0? (Note that we have assumed a load of RL, not the actual series combination of ZC (the capacitor impedance) and RL.) Explain your answer as quantitatively as possible.

4. Voltage Amplification, Av.
4.1 Using data from Part 3, calculate the no-load (R L removed) voltage amplification: \(A_v = \frac{v_o}{v_i} \)

4.2 Using data from Part 3, calculate the voltage amplification with the load resistor, \(R_L \), in the circuit: \(A_{v,L} = \frac{v_o}{v_i} \)

4.3 Calculate the power amplification in decibels (dB): power amplification \(= 10 \log_{10} \left(\frac{P_o}{P_i} \right) \) with \(P_i = (v_i)^2 / R_i \) and \(P_o = (v_o)^2 / R_L \). Note that the emitter follower can be thought of as a current amplifier, or as a power amplifier.

Summary-Conclusions:
Summarize your results. Comment on what you have learned.

Circuits for Impedance measurements.

Input Impedance Measurements.

\[V_{cc} = 15V \]

\[R_s \]

Decade Box

\[V_s \]

\[V_i \]

\[R_B = 22k\Omega \]

\[R_A \]

\[V_{out} \]

\[R_e = 10k\Omega \]

\[1\% \]

\[V_{cc} = 15V \]

\[R_s \]

Decade Box

\[V_s \]

\[V_i \]

\[R_A \]

\[R_B = 22k\Omega \]

\[R_c \]

\[-7.5V \]

\[0.1uF \]

\[R_e = 10k\Omega \]

\[1\% \]

\[V_{out} \]

\[-0.7V \]

\[V_{cc} = 15V \]

\[R_s \]

Decade Box

\[V_s \]

\[V_i \]

\[R_A \]

\[R_B = 22k\Omega \]

\[R_c \]

\[-7.5V \]

\[0.1uF \]

\[R_e = 10k\Omega \]

\[1\% \]

\[V_{out} \]

\[-0.7V \]

\[V_{cc} = 15V \]

\[R_s \]

Decade Box

\[V_s \]

\[V_i \]

\[R_A \]

\[R_B = 22k\Omega \]

\[R_c \]

\[-7.5V \]

\[0.1uF \]

\[R_e = 10k\Omega \]

\[1\% \]

\[V_{out} \]

\[-0.7V \]

\[V_{cc} = 15V \]

Input Impedance (R_{input}) measurements for the emitter follower and the emitter-coupled (common emitter) circuits. The circuit in the dotted box is to be added to the original circuits you constructed.

Note: Voltage Divider Formula applies: \(\frac{V_i}{V_s} = \frac{R_{input}}{R_s + R_{input}} \); Note: When \(R_s = R_{input} \), \(\frac{V_i}{V_s} = \frac{1}{2} \).
Output Impedance Measurements.

\[V_{cc} = 15\text{V} \]

Output Impedance \((R_{\text{input}})\) measurements for the emitter follower and the emitter-coupled (common emitter) circuits. The circuit in the dotted box is to be added to the original circuits you constructed. Since the output impedance is less than \(1k\text{\Omega}\), you are advised to use a large \(C_2\) value and operate at a higher frequency than our usual \(1kHz\), i.e. use \(5kHz\) frequency \((\because\text{make small } X_C = \frac{1}{2\pi fC_2})\). Also measure \(V_{oc}\) before inserting the (shorting) jumper wire and then measuring \(V_{out}\).

Note: Voltage Divider Formula applies: \[\frac{V_{out}}{V_{oc}} = \frac{R_{\text{output}}}{R_L + R_{\text{output}}} \]; Note: When \(R_L = R_{\text{output}}\) \[\frac{V_{out}}{V_{oc}} = \frac{1}{2} \].
EXP. 5 OPERATIONAL AMPLIFIER CIRCUITS

Basic Feedback Theory
The following basic feedback concepts, for use with op-amp circuits, are excerpted from your text references. Derivations for output voltage formulas for the various circuits are given in the text. Take notes while you study because, at the end of each set of circuit measurements, you are to include in your summary, the derivation of the applicable output voltage formula. The ideal operational amplifier (hereinafter called op-amp) has the following characteristics:
1. Infinite voltage gain
2. Infinite input impedance
3. Infinite bandwidth
4. Zero output impedance
These defined properties lead to two important theorems, called by your text author, the golden rules:
Rule 1. No current flows in or out of the input terminals.
Rule 2. When negative feedback is applied the differential input voltage is reduced to zero.
Using the above rules, the equations relating the circuit output voltage (or current) to the circuit input voltage (or current) are easily (yes!) derived. In some circuits, the assumptions of infinite input impedance and/or zero output impedance must be relaxed in order to calculate input impedance or output impedance of the circuit. These derivations, most of which will be found in the text, will not be repeated in this manual. The necessary equations for calculating the output voltage in each case will be given with the circuit diagrams. The general theory of feedback is interesting, but it is not necessary for our derivations. The golden rules and Kirchhoff's two circuit laws are all that we require. Kirchhoff's laws are:
1. At any circuit node, the sum of the currents entering the node equals the sum of the currents leaving the node. A circuit node is any junction of 3, or more, wire connections.
2. Around any closed loop of a circuit, the algebraic sum of the potential differences across each loop element is zero.
 [For passive circuit elements - resistance, capacitance, inductance, most solid state elements - this potential difference is taken to be negative — if the passive element is (mentally) traversed in the same direction as the conventional positive current, and inversely. For active circuit elements - power supplies, function generators, etc. - the potential difference is taken positive if the active element is internally traversed from its negative output terminal to its positive output terminal, and inversely.

Circuit Assembly Instructions
Except when you are occasionally instructed otherwise, each student at a station is to assemble and test his/her own circuit. At any station having more than one student, the students are not partners in the experiment; they must equally share test equipment and construction work.
Circuit assembly must be neat, and must be carried out following instructions given in lecture by the instructor, and in this manual. Your instructor will tell you to disassemble your circuit and start over if you fail to follow instructions.
The basic assembly of the op-amp circuits is the same for all of the circuits you will test. Careful attention to this basic assembly - once completed and not disassembled until all experiments are completed - will save you much time:
1. Place the 0.1 μF capacitors C_n used to bypass power supply spikes to ground, as close to the op-amp terminals as possible. The μF value of these capacitors is not critical.
2. Place the 39-pF compensation capacitor as close to the op-amp terminals as possible.
3. Offset-null adjustments are to be made in some circuits, as discussed below. The output DC voltage level. should be zero in a circuit when the circuit input is shorted to ground. A suitably connected 50k potentiometer and a series 220k-ohm resistor will be used to bring the output to zero VDC, when needed.

Preliminary circuit assembly

1. Assemble the basic op-amp circuit (power supply connections, ground connections shown in the Basic Circuit Diagram on Page 7.2. Check your wiring carefully.
2. Before connecting to power supply plus and minus terminals, use a voltmeter or your Oscilloscope to set $V_{CC} = +15.0\, \text{V}$ and $V_{EE} = -15.0\, \text{V}$. Turn off the power supply; then connect the power supply ground first, and then connect the plus and minus leads. It is alright to turn on and shut off the power supply while the op-amp is connected, as long as the voltage settings are correct. (Neither voltage must ever exceed 18 volts magnitude.) Also set the current limit (if available) to 2mA maximum.
3. Turn on the power supply. Shut it off fast if heat develops in your circuit, excessive heat means that you have made a serious wiring mistake. To test for heating, put your finger (lightly) on the op-amp. It should feel cool, or slightly warm.
4. You are ready to proceed.

NOTE WELL: The power supply voltages should be set in the above manner any time that you start a new day's experiments, or any time that you suspect the settings have been changed. It is well to check these voltages at your circuit nodes before you make any measurements.

General Instructions for Experiments

Draw the circuit diagram for the experiment, including the offset-null potentiometer and resistor, but omitting the rest of the basic circuit elements in the diagram on page 7.

Turn off power supply. Assemble the rest of the circuit. Check wiring carefully. Turn on power. Check power supply voltages at the circuit nodes.

Observe input voltage on Oscilloscope CH1 DC input; observe output voltage on Oscilloscope CH2 DC input; trigger on CH1. Adjust trigger LEVEL (usually, on positive slope) for stable display. (Trigger on CH2 if CH1 input voltage does not give stable display. Record the fact whenever you do this.)

Ground the circuit input voltage terminal with a short lead (exception: for a differential amplifier, short the 2 input terminals to each other with a short lead, but not to ground) and check the output voltage for zero offset. If applicable, adjust null-offset circuit. (Normally, this setting will be OK after the first adjustment.)

For all circuits except the active filters, check circuit response at 1 kHz for sine, triangle and square waveforms. Be sure to adjust the function generator output each time for suitable amplitude and for zero offset.

5.1 Increase the function generator amplitude in order to find the output voltage distortion point. Then decrease to about 3/4ths of this output amplitude so as to have an undistorted waveform.

5.2 Make labeled sketches of input and output waveforms for all three input waveforms.

5.3 For amplifier circuits, take necessary measurements and calculate $A_v = V_o/V_i$.

5.4 Measure input resistance and output resistance only if directed to do so later.
6. For amplifier circuits: using sine waveforms only, determine the upper and lower frequency cutoff points (frequencies at which A_v is decreased by 3 db).

7. For integration aces differentiation circuits only, using a triangle waveform (whose integral and derivative are easily determined, and are easily identifiable on the Oscilloscope), observe the output waveform at frequencies (1) well below, and (2) well above, the RC crossover (cut-off) frequency in order to determine the region in which the circuit is properly functioning. Use the correct frequency range, in each case, in making measurements.

7.1 Make a sketch, for each available input waveform, of the input and output waveforms. Justify the output waveform (waveform, amplitude and phase - relative to the input waveform), using the theoretical output voltage equation.

7.2 In your summaries, comment on the waveforms for the regions above (or below, as the case may be) the crossover frequency, where the circuit is not functioning as differentiator or integrator.

8. For filter circuits only:

8.1 Using methods you learned when you studied passive filter circuits in EXP. 2, take data and draw a graph covering the range, (0.1 f_c) to (10 f_c). f_c is the crossover frequency; $f_c = 1/(6.28 RC)$.

8.2 Verify by additional measurements that the filter attenuation for high-pass and low-pass filters approaches the -12 db roll-off of a 2-pole filter (6dB for a 1-pole you did in the earlier low- high-pass filter experiments. Explain carefully in your report the meaning of "-12dB rolloff."

8.3 For the band-pass filter, measure the Q (quality factor) of your filter. [See text-book for the definition of Q.]

9. For all circuits give a short summary of your results. Include the derivation of the equation for the output voltage, V_{out} of the circuit tested.

LM741 Pin Number Identification is quite simple and easy to remember.

Basics of the LM741 OP AMP.

Drive Circuit Diagram

Physical Pin Diagram
EXP. 5.1A Differential Amplifier

\[V_o = (V_2 - V_1) \frac{R_2}{R_1} \]

- \(R_1 = R_3 = 1k\Omega \) (1%)
- \(R_2 = R_4 = 10k\Omega \) (1%)

Important note: The negative feedback is always connected from the \(V_o \) (pin 6) to the negative input (pin 2).

Input should be 1kHz sine wave of \(1V_{pp} \)

EXP. 5.1B Inverting Amplifier

\[V_o = -V_i \frac{R_2}{R_1} \]

- \(R_1 = 1k\Omega \) (1%)
- \(R_2 = 10k\Omega \) (1%)

\(V_i \) should be 1kHz sine wave of \(1V_{pp} \)

EXP. 5.1B Non-inverting Amplifier

\[V_o = V_i (1 + \frac{R_2}{R_1}) \]

\(V_i \) should be 1kHz sine wave of \(1V_{pp} \)
EXP. 5.1C Unity Gain Follower

\[V_o = V_i \]

High Input Impedance
Low Output Impedance
Similar to a Transistor Emitter-Follower

EXP. 5.1D Level Detector (Comparator).

Set \(V_i \) using +/-6V power supply to
any voltage \(-6V < V_i < 6V\) and measure it
with your DVM.
Adjust \(R_o \) either way, until the LED lit
Switches Off and the other LED
switches On.
When this lighting transition is reached
measure the value of \(V_o \) using the DVM.
Compare this value of \(V_o \) with \(V_i \).
Determine which LED lights when
\(V_i > V_o \) and write a short paragraph how
this is happening (OP-Amp Characteristics).

EXP. 5.1E Summing Amplifier (Mixer)

\[V_o = -\left(V_{i1} \frac{R_3}{R_1} + V_{i2} \frac{R_1}{R_1} \right) \]

\(R_1 = R_2 = 100 \, k\Omega \)
\(R_3 = 100k\Omega \)

Use the trigger output of the
waveform generator as
input for \(V_{i2} \) and the regular output
of the generator for \(V_{ii} \).
EXP. 5.1F Basic Integrator

\[V_o = -\frac{1}{R_1 C} \int V_i \, dt \]

Note:
- \(R_2 \) is there to (continuously) discharge \(C \).

EXP 5.1G Basic Differentiator

\[V_o = -R \frac{dV_i}{dt} \]

EXP 5.1H Basic Differentiator

\[V_o = -R \frac{dV_i}{dt} \]
EXP 5.1I Voltage-to-Current Convertor

\[R_1 = R_2 = R_3 = 10k\Omega \]
\[V_1 (= V_2 = V_3 = i_1 R_1) = i_1 R_1 \]

Note: \(i_L \) is independent of the load resistor \(R_L \).

EXP 5.1J Active High-Pass Filter

\[V_o = V_i A_v \frac{f_c^2}{\sqrt{f^4 + f_c^4}} \]

\[A_v = 1 + \frac{R_3}{R_4} \]
\[R_1 = R_2 = 10k\Omega \]
\[C_1 = C_2 = 0.01\mu F \]
\[R_3 = 10k\Omega \]
\[R_4 = 5.6k\Omega \]

Look up similar Active Low-Pass and Band-Pass Filters in your text book.
next-following, digital circuit. (E.g., \(V_{CC} = +5.0 \) V would be used for digital logic operating at +5.0 VDC, even though the comparator might be operating with power supplies of, say, +15.0 and -15.0 VDC.)

Output transistor emitter: The emitter of the LM311 output transistor is also connected to a pin (Pin 1). This pin must be connected either to ground or to a negative voltage supply with (possibly) an external emitter resistor connected in series. Thus, with both emitter and collector of the output transistor available, the user has wide latitude of output transistor circuit type and of output voltage logic levels, but with absolute maximum \(V_{CC} = +18 \) V (Pin 7) and \(-V_{CC} = -18 \) V (Pin 1).

Output transistor function in our circuits:
1. When the input trigger voltage is below the input threshold voltage, the output transistor is cut off, drawing essentially no current from the external \(+V_{CC}\), so that the output voltage is high and approximately equal to the \(V_{CC} \) value.
2. When the input trigger voltage is above the input threshold voltage by only a fraction of a millivolt, the output transistor is driven into saturation, with the collector being only about 0.2 V above the emitter. If the emitter pin is grounded, then, the output voltage is low, slightly above zero volts.

Comment on LNL311 power supply requirements: this IC is designed to operate at \(V_{CC} = +15 \) V and \(-V_{CC} = -15 \) V, and much of the manufacturer's data are for operation at these voltages. However, \(-V_{CC}\) can be as high as zero volts in some applications. It is well to note that the LM311, unlike many other comparator ICs, will operate with \(+V_{CC} = +5.0 \) V and \(-V_{CC} = 0.00 \) V, thus allowing its use on digital logic boards having only a single +5.0-volt power supply. The manufacturer's data sheets should be consulted for special cases, including limitations on input voltages, which depend upon the power supply voltages that are used.

The experiments are:

6.1 Schmidt trigger circuit.

Both experiments, and a single report covering both, should easily be completed in a single laboratory period. Note that only a minor change (replacing the external signal generator at the inverting (-) input pin by a resistor-capacitor feedback network) converts the Schmidt trigger circuit to the relaxation oscillator circuit.

Exp. 6.1 Schmidt trigger circuit -instructions.

Draw carefully the Schmidt trigger circuit. Label IC pins, \(V_{CC} \) voltage values, and resistor values.

Predict (calculate) the two threshold voltages, assuming that output high level coincides with output transistor cut-off, that output low level coincides with output transistor saturation, and that the IC inputs draw negligible current at all times.

Wire the circuit in approved manner, and so that the minor changes to convert to the second circuit can easily be made.

Check your circuit wiring carefully. (If another student is working at the same station, have him/her also check your circuit.)

5. Before connecting your circuit to the power supply, adjust the power supply voltages to the correct values, using a good multimeter to provide accurate readings. Then connect the circuit to the power supply. (The signal generator is not connected at this point.)

6. Measure the two threshold voltages: 6.1 Connect a 4.7k resistor (to prevent excessive current) from Pin 3 to \(-V_{CC}\), to force the trigger voltage well below the threshold voltage.
EXP. 6 - COMPARATOR CIRCUITS

Description of the Comparator

(IC pin numbers referred to below assume an 8-pin JG or P in-line package. See manufacturer's data sheets for appropriate pin numbers if another package is used.)

The LM311 IC comparator is, basically, a high-gain differential amplifier \((AV = 200,000)\) similar to the IC op-amp. Unlike the op-amp, the comparator is designed for comparing two voltages, and is not used for linear amplification.

In normal operation:
1. The DC reference voltage (also called the threshold voltage or, simply, the threshold), is applied to the non-inverting (+) input.
2. The variable comparison voltage (also called the trigger voltage or, simply, the trigger), to be compared to the threshold voltage, is applied to the inverting (-) input.
3. When the trigger voltage is below the threshold voltage, the output is at high voltage, close to the pull-up power supply voltage.
4. When the trigger voltage rises to exceed the threshold voltage by only a fraction of a millivolt, the output voltage rapidly swings to its lowest possible value.

Thus, we can think of the comparator as having a 2-state logic output whose HIGH- or LOW-LOGIC value depends upon whether the input analog trigger voltage is below, or above, the threshold voltage. Thus, the comparator serves as an interface between an analog and a logic circuit - analog input, logic output. The comparator can also be used to clean up (that is, restore to square-wave form) a digital signal that has been altered in some undesired way by, for example, a communications cable linking two units.

Hysteresis: In order that the input low-to-high trigger voltage transition produces a clean transition of the output voltage, the circuit using the IC comparator provides a lower threshold voltage for the return, high-to-low triggering. This difference in triggering threshold level depending, as it does, upon whether the output is in the high-voltage state or in the low-voltage state, is called hysteresis because it depends upon the past triggering history of the circuit. The hysteresis voltage difference can be designed to be of the order of tens-to-hundreds of millivolts in an individual application.

Positive feedback: in the two circuits we will test, the resistor network that provides the hysteresis also provides positive voltage feedback to the input circuit, resulting in rapid changeover from one output state to the other. Explanation: before the low-to-high input transition, the threshold voltage is at the higher hysteresis value. As the input voltage crosses the threshold level, the output voltage falls, and with it, the input threshold level moves toward the lower hysteresis value, thus providing a larger differential voltage input; this increased differential input produces further decrease in the output voltage. The cumulative positive feedback effect rapidly drives the output transition to the lower logic state. A similar effect occurs for triggering in the opposite direction.

Comparator output: the LM311 comparator has an open-collector transistor output that requires an external pull-up resistor. The collector output pin (Pin 7) is connected internally to the collector of the output transistor, which has no other internal connection to it; thus, the collector resistor and the collector \(+V_{cc}\) voltage must be supplied, external to the IC. This design has the advantage that the user can match the signal voltage levels of the
Measure and record the voltages at Pins 8, 4, 7, 3 and 2. with notation as to what each pin number represents.

6.2 Connect a 4.7k resistor (to prevent excessive current) from Pin 3 to \(+V_{CC}\), to force the trigger voltage well above the threshold voltage. Measure and record the voltages at Pins 8, 4, 7, 3 and 2. with notation as to what each pin number represents.

6.3 Specify the two threshold voltages and the hysteresis voltage difference. Compare these with your calculated values. Comment on any differences. Note that these measured threshold values do not apply to the relaxation oscillator circuit operated at lower \(V_{CC}\) values.

7. Measure the response of the circuit to a sine waveform (try 1 kHz) and to a triangular waveform. For each waveform, do the following:

7.1 Before connecting the signal generator: using the Oscilloscope with DC input as a voltmeter, set the offset voltage to zero \(V_{DC}\), and set the voltage amplitude to a small value. [Note whether increasing the voltage amplitude to a maximum (not more than 15 V) upsets the zero offset voltage level. If it does, you will have to make adjustments to the offset voltage each time you change the voltage amplitude.]

7.2 Use dual Oscilloscope DC inputs to observe the input voltage (Pin 3) and the output voltage (Pin 7).

7.21 First note that too-small an input signal amplitude fails to cause triggering. Note the minimum signal amplitude for triggering. Explain this value in terms of your previous threshold measurements.

7.22 Increase the signal amplitude to 2 or 3 times the minimum value for triggering. Then make a carefully drawn sketch of the input and output waveforms, superimposed on each other. Note on this sketch each important voltage value and time interval. What determines the time intervals of (a) output low, (b) output high, (c) total period of the output waveform? Calculate the HIGH and LOW times based on the waveform input and the threshold levels \(V_{high}\) and \(V_{low}\). Are your previously measured threshold values confirmed by these observations?

7.23 While observing the Oscilloscope waveforms, increase the signal amplitude appreciably. Without drawing a new sketch, comment on and explain any changes in your observations as shown on your sketch of part 7.22

8. Change the input signal to a square waveform, differentiated by a suitable RC differentiator (you must choose the R and C values). Use a suitably connected diode to eliminate the negative portion of the differentiated wave. Using an input signal peak voltage (seen on Pin 3) well above the threshold voltages, observe the input and output voltage waveforms, making a sketch similar to your sketch of part 7.22.

9. Write a short summary of your Schmidt trigger experiment.

EXP. 6.2 The RC relaxation oscillator.

1. Draw carefully the relaxation oscillator circuit. Label IC pins, \(V_{CC}\) voltage values, and capacitor and resistor values.

2. On your circuit diagram, note threshold voltages that you calculate for \(V_{CC} = \pm 5.0\) V. (see diagram).

3. Remove the two power supply leads, without turning off the power supply, while you make these changes. Set the power supply voltages to \(\pm 5.0\) V. Note well the circuit differences at Pins 1, 4, and 8.

4. Remove the signal generator's leads, and make the necessary changes to your Schmidt trigger circuit to convert it to the relaxation oscillator. Do not reconnect the signal generator to this circuit.
5. Check your circuit wiring changes carefully. Then, reconnect the power supply leads; be careful not to reverse the lead polarity! 6. Observe and make superimposed sketches of the input and output waveforms in the manner used in Part 7.22. Note carefully the time intervals: (a) for charge and for discharge of the capacitor (look at the voltage waveform on Pin 3), (b) for output voltage low, (c) for output voltage high, and (d) for the period of the output waveform.

7. Note the threshold voltages between which the capacitor charges and discharges. Using the nominal RC time constant of your feedback circuit, calculate the expected capacitor charge and discharge times. Compare with the measured values; explain any significant differences. Write a short summary of your relaxation oscillator experiment. Comment on the similarities and dissimilarities of the two circuits you have tested. Suggest possible uses for your oscillator.

DIAGRAMS FOR LM311 COMPARATOR

The Schmidt Trigger

Thresholds:

\[V_{\text{high}} = V_{cc} \frac{R_1}{R_1 + R_2 + R_3} \]

\[V_{\text{low}} = V_{ee} \frac{R_1}{R_1 + R_2} \]

Hysteresis Gap = \(V_{\text{high}} - V_{\text{low}} \)

Use DC Oscilloscope Inputs

The RC Relaxation Oscillator

RC Time Characteristics (\(\tau \)):

Charge \(U_p = R_4 C \)

Discharge = \((R_4 + R_3)C\)

Use AC Oscilloscope Inputs.

Brief notes on analysis of RC decay or charge up curves: The time-dependent voltage of the capacitor can be expressed as \(V_c(t) = A + B e^{-\frac{t}{R C}} \), where R and C are the respective Resistor and Capacitor values. Determine A and B for your case(s) using the boundary conditions \(V_c(0) = A + B \) and \(V_c(\infty) = A \). Use the numerical A, B, R, C values determine to calculate V(t) for all t \(\geq 0 \).
EXP. 7 - 555-556 TIMER CIRCUITS

Description of the Dual 556 Timer.
The dual timer unit 556 contains 2 independent 555 timer units that share a common V_{CC} and ground. IC pin numbers referred to below assume a dual timer in a 14-pin N in-line package. See manufacturer's data sheets for appropriate pin numbers if another package, is used. NOTE WELL: if you encounter a reference that gives pin numbers for the single-unit 555 IC, the numbers will differ from those given below.

Power supply requirements:
The 556 dual timer will operate with a $+V_{CC}$ in the range, 4.5 to 16 volts. Because the threshold and the trigger inputs operate at $(2/3)V_{CC}$ and $(1/3)V_{CC}$, respectively, due to an internal voltage divider that consists of three 5k resistors connected in series between V_{CC} and ground, the behavior of many circuits that use the timer are insensitive to power supply voltage variations.

Simple description of the timer operation:
This description supplements that of your text reference. The first comments below concern the trigger and threshold functions. ("Trigger" and "threshold" are not used here in quite the same sense as we used them in discussing the comparator circuits, a difference in terminology that should cause no problems.)
1. When the trigger pin is at a voltage level below $(1/3)V_{CC}$, the output pin is held HIGH (near V_{CC}).
2. When the threshold pin is at a voltage level above $(2/3)V_{CC}$, the output pin is held LOW (near ground).
3. The normal switching from output-low to output-high occurs on a negative-going trigger pulse through the level, $(1/3)V_{CC}$.
4. The normal switching from output-high to output-low occurs on a positive-going threshold pulse through the level, $(2/3)V_{CC}$.
5. An internal discharge transistor is provided, with its collector and its emitter connected to external pins. This switching transistor is turned OFF (will not draw current, from the external circuit node) when the OUTPUT IS HIGH. The transistor is turned ON when the OUTPUT IS LOW, effectively shorting the external circuit node (anything connected to the collector pin) to ground. (The discharge transistor emitter pin is internally connected to ground.)
6. A RESET pin is provided. When this pin is at LOW voltage (it switches out of reset when the reset pin voltage is between 0.4 V and 1.0 V), the entire functioning of the timer is inhibited, with output held low. The RESET pin should be connected to $+V_{CC}$ in normal operation; it should not be left floating.
EXP. 7.1 The RC relaxation oscillator (2 circuits, each using a timer IC)

Draw carefully the two relaxation oscillator circuits. Label IC pins, \(V_{CC} \) voltage values, and capacitor and resistor values.

2. Do not connect up both circuits. First connect the Astable circuit and show it to work. Then connect the Modified Astable circuit. Do not put both circuits up at the same time, as you will not be sure (in the event on part does not work) what the problem is.

3. Check your circuit wiring carefully. If another student is at your station, have him/her also check your wiring.

4. Use the multimeter, to set the \(+V_{CC} \) power supply to \(+5.0 \text{ V}\). Then, connect the power supply leads to your circuit.

5. Use dual Oscilloscope DC inputs to observe the input voltage (Pins 2 & 6) and the output voltage (Pin 5) for the "Astable" circuit. Then use dual Oscilloscope DC inputs to observe the input voltage (Pins 8 & 12) and the output voltage (Pin 9) for the "Modified Astable" circuit. For each circuit, do the following.

\[R_A = 4.7 \text{k}\Omega, \quad R_B = 22 \text{k}\Omega, \quad C = 0.0033 \text{uF}, \quad R_A' = 68 \text{k}\Omega, \quad R_B' = 68 \text{k}\Omega \text{ and } C' = 0.0033 \text{uF} \]
5.1 Carefully sketch the input and output voltage waveforms, superimposing them on a single time scale.
5.2 Measure and record pertinent voltage levels and time intervals for both input and output waveforms. Note especially the switching points.
5.3 Measure the output-high and output-low time intervals. Calculate these values from the nominal \(R_A \), \(R_B \) and \(C \) values. Compare measured and calculated values.
6. While you observe (for the "Astable" circuit only) the input and output Oscilloscope traces, increase \(V_{CC} \) to \(+10V\), then to \(+15V\), while observing effects. Without making another sketch of the waveforms, state which measured values for Part 5.2 change, and which values do not change.
7. Write a short summary of your RC oscillator experiment. Include specific comments on the functions of the two diodes in the "Modified Astable" circuit.

Operation of the RC oscillator circuits
Refer to the "Astable Circuit" diagram. [The description for the "Modified Astable" circuit is similar, and is left to the student.] Note that, in the astable circuit, the trigger and threshold pins are connected together and to the ungrounded end of the external capacitor.
1. Assume that the circuit is initially without power, so that the capacitor is fully discharged. Assume, for this discussion, \(V_{CC} = +15 \text{ V} \). [But, note that \(+5.0 \text{ V}\) is used in the experiment.] When power is turned on, the output is triggered to HIGH and the capacitor is connected to \(+15\text{V}\) through the series resistance, \(R_A + R_B \). The charging time constant is \((R_A + R_B)C\).
2. When the capacitor voltage reaches \(+10\text{V}\), the threshold input triggers the output to LOW, and the discharge transistor is turned on, grounding the capacitor through the series resistance, \(R_B \). The capacitor begins discharging toward ground potential with time constant, \(R_B C \).
3. When the capacitor voltage reaches \(+5\text{V}\), the trigger input triggers the output to HIGH, and the capacitor begins charging toward \(+15\text{V}\) again.
4. Thereafter, the charge-discharge sequence of the capacitor is:
 4.1 Charge from \(+5\text{V}\) toward \(+15\text{V}\) (terminating charge at \(+10\text{V}\)) with time constants \((R_A + R_B)C\).
 4.2 Discharge from \(+10\text{V}\) toward \(0\text{.OV}\) (terminating discharge at \(+5\text{V}\)) with time constant, \(R_B C \).
 4.3 The charge and discharge time intervals are each equal to 0.693 times their respective time constants. Prove this statement in your report.
4.4 The output voltage for the "Astable" circuit is a periodic square waveform with unequal high- and low-voltage time intervals. (The "Modified a-stable" circuit should in principle provide equal high- and low-voltage time intervals if \(R_A = R_B \), but you will find this not to be the case because of the diode drop volts. You are expected to discuss the effect of the diodes in some detail).

EXP. 7.2 The Monostable circuit
1. Draw carefully the monostable circuit and the time-delay circuit. Label IC pins, \(V_{CC} \) voltage values, and capacitor and resistor values.
2. Connect both circuits in approved manner before making observations. Do not at this time connect the function generator to the trigger input, or the monostable output (Pin 5) to transistor T1.
3. Check your circuit wiring carefully. If another student is at your station, have him/her also check your wiring.
4. Use the digital multimeter to set the \(+V_{CC}\) power supply to \(+5.0 \text{ V}\). Then, connect the power supply leads to your circuit.
5. Record in a table the DC voltages of Pins 1, 2, 6, 5, 7 and 10, 13, 12, 8, 9. Identify each pin function in the table. Check these voltages are expected voltages for the monostable state of the circuit.

6. Before you connect the function generator to the circuit, adjust it for a square waveform output of 0V to +4.0V, at a frequency of about 400 Hz. Then, connect the function generator output to the capacitor CD of the differentiating RC filter, to provide the negative-going trigger pulse to Pin 6. Note that both a negative pulse and a positive pulse are generated at Pin 6; only the negative pulse affects the circuit. Although it is not here necessary, a suitably connected signal diode could be used to remove the positive pulse.

Important:
Connect Output 1 to the R_B of transistor switch input after Monostable circuit works

$R_B=4.7k\Omega$, $C_D=0.01\mu F$, $C_I=0.01\mu F$, R_I is varied (see text) $C_I=0.01\mu F$

R_2 is varied (see text) $C_2=0.01\mu F$, R_B should be less than 1kΩ

7. Use dual Oscilloscope DC inputs to observe three waveforms (as described below) for the monostable circuit. "Observe" means you are to make careful, well-labeled sketches of the three waveforms, superimposing them so that their relative time scales are evident. Make these sketches for ONLY ONE value of R_I (use 22kΩ), using 0.01 μF for C_I.

7.1 Connect the output (Pin 5) to Oscilloscope, Channel 1 and trigger on CH1. Adjust the Oscilloscope trigger level for stable triggering on positive slope. Do not change this CH1 connection.
or the triggering, except for the trigger level if the display becomes unstable, while completing your waveform sketches.

7.2 First, connect the trigger (Pin 6) and, second, the external capacitor (Pins 1 & 2) to Oscilloscope Channel 2 in order to observe their waveforms.

7.3 Check that the 400-Hz frequency of your square wave is not critical by slowly increasing the generator frequency until interference with the mono-stable circuit operation occurs.

7.4 Analog-to-digital (resistance-to-time) conversion:

7.41 Record in a table the following data: (Col. 1) nominal value of \(R_T \), (Col. 2) value of \(R_i \) measured with a Beckman digital multi-meter, (Col. 3) Oscilloscope-measured mono-stable output-high time, and (Col. 4) calculated output-high time \((1.10 \times R_i C_i) \).

7.42 Take data for \(R_i = 4.7k \), 15k, 22k, 47k, 68k and 100k.

7.43 Make a Cartesian graph of \(R_i \) (Col. 2) versus measured output-high time (Col. 3), as horizontal axis. What does this graph tell you? Obtain the slope of the graph in ohms/microsecond, as your calibration constant for the circuit.

8. Write a short summary of your monostable circuit experiment.

Operation of the Mono-stable Circuit.

This mono-stable circuit has a single stable state, with the output (Pin 5) at LOW voltage, zero volts. This state is assured by the positive voltage \(V_{CC} \) applied to the trigger (Pin 6) through the resistor \(R_D \), and by the zero voltage at the threshold (Pin 2) produced by the timer's internal discharge transistor, which shorts Pin 2 and the external capacitor \(C_i \) to ground potential. The discharge transistor (acting as a switch) is always on (equivalent to a closed switch) when the output is low, and is always off (equivalent to an open switch) when the output pin is high.

A trigger pulse that is sufficiently negative-going to bring the trigger pin just below \((1/3)V_{CC} \), causes the circuit to switch to the state of output HIGH for the time interval, \(1.10 R_i C_i \), after which the circuit returns to its mono-stable state of output LOW until the next trigger pulse arrives.

The trigger pulse produces the following sequence of events:

1. The output (Pin 5) immediately goes HIGH;

2. The discharge transistor turns off (removing the short to ground potential), allowing capacitor \(C_i \) to start charging toward \(V_{CC} \) through resistor \(R_i \). The threshold (Pin 1) is connected to \(C_i \), and so its voltage also moves toward \(V_{CC} \).

3. When the capacitor-threshold voltage reaches \((2/3)V_{CC} \), the output pin returns to its stable zero-volts state and the discharge transistor is turned on.

4. The discharge transistor effectively shorts \(C_i \) to ground and holds it and the threshold (Pin 1) at zero volts, thus completing the return of the circuit to its mono-stable state.

In your report, prove that the length of the output-HIGH state is indeed equal to \((1.10) R_i C_i \). Note that \(1.10 = -\ln(1/3) \).

The fact that a short, negative-going input trigger results in an output-high pulse, of duration that is proportional to the resistance \(R_i \), permits use of this circuit to convert a physical analog resistance measurement into a digital number. This is done by measuring the pulse length with a high speed digital timer, a simple feat for a computer module. The fact that many transducers convert such things as temperature changes, pressure changes, strain changes, etc. into resistance changes makes this circuit very useful in a wide range of analog-to-digital conversions.

EXP. 7.3 The Time-Delay circuit

1. Your time-delay circuit should already be wired, and the first mono-stable circuit should be functional so that its output pulse can be used to trigger the time-delay circuit. Replace the resistor
R1 by the value, 22kΩ. Record, as part of your data for the time-delay circuit, your measured value of the first mono-stable output-high time for the 22kΩ resistor.

2. Connect the output (Pin 5) of the mono-stable to the 470-ohm base resistor of the switching transistor T1, as shown on the circuit diagram.

3. Connect the output (Pin 9) to Oscilloscope Channel 1 and trigger on CH1. Adjust the trigger level for stable triggering on positive slope. Do not change the CH1 connection or the triggering, except for the trigger level if the display becomes unstable, while completing your waveform sketches.

4. Connect the trigger, the threshold and the external capacitor (Pins 8 & 12) to Oscilloscope Channel 2 in order to observe the waveform.

5. With power on, and the first monostable circuit providing the time-delay circuit trigger (the monostable, in turn, being triggered by the differentiated output of the function generator, as before), you should now be able to see a display that shows a delay of time, equal to the first monostable output-high time, before the capacitor C2 begins to charge. During this time, the time-delay circuit output is high. The capacitor C2 then charges from zero toward 5.0 V with time constant, R2C2, while the time-delay output remains high. When the capacitor reaches (2/3)VCC, in time, 1.10 R2C2, the output triggers back to its zero-level monostable state. Sketch all waveforms carefully.

6. Verify that the time-delay output remains high for a time equal to the sum of the trigger pulse time (the output-high time of the first monostable circuit) and the charging time to (2/3)VCC of the capacitor C2.

7. Write a short summary of your time-delay circuit experiment.

Description of the Time-Delay Circuit

Refer to the circuit diagram. Note that this circuit, which is also a monostable circuit, differs from the first monostable circuit in two details.

(1) The external capacitor and the threshold input are connected to the trigger input instead of to the discharge transistor, which is not used. (2) Before the external switching transistor T1 is triggered, it is initially biased to cutoff, allowing the capacitor and threshold input to rise above (2/3)VCC (actually, to about 4V), producing a stable output-LOW state. The sequence of operation follows:

1. The transistor T1 is turned on by an external, logical HIGH, triggering pulse that lasts for a duration determined by the circuit designer. This external transistor grounds the capacitor C2, quickly discharging it and forcing the trigger input (Pin 8) LOW, which in turn triggers the output (Pin 9) to the output-HIGH state.

2. The output-HIGH state continues until the external pulse turns transistor T1 off, then and only then allowing the capacitor C2 to charge from zero volts toward VCC through the series resistor R2, with time constant R2C2. The output-HIGH state continues for the additional time interval that is required for the capacitor to charge to (2/3)VCC, namely, 1.10R2C2. At this time, the circuit triggers back to its stable, output-LOW state.

3. Note that the total time of the output-HIGH state is the sum of the external transistor on-time T1 and the R2C2 capacitor charging time. Thus, the RC timing is delayed until after the user's T1 on-time is terminated.

4. A convenient test source giving a known trigger pulse length is the output (Pin 5) of the first mono-stable circuit. Delay circuits similar to this one are used in microcomputers to delay RESET functions until power supplies have reached stable potentials.

Final Comments

The 555 single-unit timer and the 556 dual-unit timer have three fundamental operating modes. You have now wired and tested all three:

1. The free-running RC oscillator (the a-stable circuit and the modified a-stable circuit),
2. The mono-stable circuit,
3. The time-delay circuit. Using these fundamental circuit types, experimenters have developed a wide range of interesting and useful circuits such as tachometers, burglar alarms, assorted time delay circuits, and generators of various audio sounds. The student is referred to applications notes of manufacturers for more details.
EXP. 8 USEFUL PULSE SAMPLING CIRCUITS.

EXP 8.1 Peak Voltage Detector

8.11 Assemble the peak voltage detector circuit given below. (Reference also Text Book.) Check the wiring carefully, then connect the power supply. Observe the circuit input and output values with the dual trace Oscilloscope.

8.12 Using both sine and triangle input waveforms (of various amplitudes, with and without offset voltages), take the necessary data to verify that the output voltage equals the peak DC input voltage in each case. Use manual pulsing of the FET gate to reset the peak detector between measurements. Be sure to keep an accurate record of your experiment.

8.13 After you have applied an input waveform of known maximum peak voltage to your detector and, then, without resetting the circuit, remove the input waveform and observe the output voltage for a period of time (probably for several minutes), recording voltage versus time values. For data analysis, assume that the capacitor, C, is discharging through an equivalent resistor, R. Determine the validity of this assumption by making a semi-log plot of your data. Find the RC time constant and the equivalent resistance, R.

8.14 Write a short summary of your findings.

Peak Voltage Detector Circuit

R=10kΩ

C is a red Tantalum Capacitor which is polarized, so connect properly.

Sw is a jumper switch.

It can be replaced at terminals A and B in figure by a JFET or MOSFET [expensive] switch if needed, see below.

NTE 312 JFET
Exp. 8.2. Sample-and-Hold Detector.

8.21 Assemble the sample-and-hold circuit given below on Page 4. (Reference your text book.) Check the circuit wiring carefully, then connect the power supply. Observe the circuit input and output voltage value with the dual trace Oscilloscope.

8.22 Use various DC input voltage values from your 0-6V power supply. Take the necessary data to verify for each input DC voltage tried, that the output DC voltage equals the input DC voltage. Use switch to sample the input voltage. Be sure to keep an accurate record of your experiment.

8.23 After you have applied a known DC input voltage and sampled it (using the FET gate), remove the input voltage and observe the output voltage for a period of time, recording voltage versus time values. For data analysis, assume that the capacitor, C, is discharging through an equivalent resistor, R. Determine the validity of this assumption by making a semi-log plot of your data. Find the RC time constant and the equivalent resistance, R.

8.24 Using knowledge of circuits you have used during the semester, outline in detail the design of a circuit combination that would permit you to obtain voltage samples of, say, a triangle waveform (or alternatively, a sine waveform) at a series of different phases covering one period of the waveform.

Exp. 8.2. Sample-and-Hold Circuit.

R=10kΩ
C is the red **Tantalum Capacitor** which is polarized, so connect properly.
Sw is a jumper switch.
It can be similarly as above, replaced at terminals A and B in figure by a JFET or MOSFET switch if needed, see previous Peak Voltage Detector circuit.

8.25 Write a short summary of your findings.
EXP. 9 DIGITAL CIRCUITS
General Instructions:
1. For all experiments, do the following (details in the Appendix):
 1.1 Draw the logic circuit diagrams.
 1.2 Use the logic pulser for all inputs. (Exceptions may be called for in an individual experiment.)
 Note: An inverter (a NOT gate) placed in series with, say, the pulser QA output, converts it to QA'.
 1.3 Make voltage vs. time sketches of Oscilloscope DC input traces for (a) the pulser clock, (b) all input pulse sequences used, and (c) output(s).
 1.4 Give truth tables, as checked by your input/output sketches.
 1.5 Answer any questions that may be asked in individual experiments.

 Answer all questions with complete sentences.
 1.6 Write a short summary for each experiment group (6 summaries, in all).

2. For EXPS. 9.1 and 9.2, do the following:
 2.1 Starting from the experimental truth table, write a Boolean expression consisting of AND statements for each Q = 1 line of the table, with all of the AND statements OR'd together. Then, use Boolean algebra identities (see your text book) to reduce this expression to simplest form.
 2.2 Carry out any other Boolean algebra asked for (Karnaugh Maps).

3. EXP. 9.3
 3.1 Give a detailed description of the sequential operation of each circuit.
 3.2 In your summary, state the distinctive features in which the un-clocked RSFF and the clocked RSFF differ from each other. Comment on the advantages and disadvantages resulting from these differences.

4. EXPS. 9.4, 9.5, 9.6. Follow any special instructions that are given.
List of Experiments and Special Instructions
 All diagrams for experiments, when given, will be found sequentially in the Appendix, starting on Page 1-10.
 If no comments or special instructions are given for any listed experiment, assume that the General Instructions given above are sufficient.
 NOTE WELL: Both your text and the Appendix contain important theoretical and experimental details, and precautions for carrying out digital logic experiments. Refer frequently to these sources while you are doing the experiments.

Symbolism Used in the Laboratory Manual
This discussion assumes positive logic, that is, Q = 1 if the logic result is true (T), and Q = 0 if the result is false (F). In terms of circuit 2-state voltages (H = high and L = low), logic-1 = H and logic-0 = L.
 Q = the output state resulting from any logic statement, Q_{n+1} = the output state that follows state, Q_n, in sequence.
LOGIC operations, summarized below, are defined by Truth Tables, as well as by words (see your text book):
NOT: \(Q' = \text{NOT} \ Q \) = the state that is complementary to \(Q \) [Most texts use \(Q \) instead of \(Q' \].]

AND: \(Q = AB = (A \ \text{AND} \ B) \) [\(Q = 1 \) if and only if both \(A = 1 \) and \(B = 1 \)]

NAND: \(Q = (AB)' = \text{NOT} (A \ \text{AND} \ B) \)

OR: \(Q = A + B = (A \ \text{OR} \ B) \), [\(Q = 1 \) if either \(A = 1 \) or \(B = 1 \) or both = 1]

NOR: \(Q = (A + B)' = \text{NOT} (A \ \text{OR} \ B) \)

XOR: \(Q = A \oplus B \) [\(Q = 1 \) if either \(A = 1 \) or \(B = 1 \), but not both = 1]

Note: Some Conventions use an Upper Score Bar instead of the prime, for example, \(Q' = \overline{Q} \)

Circuits for each of these logic operations can be made up using only IC NAND gates (or only NOR gates), as we shall see. We shall use the internal pull-up, quad NAND gate, 7400 IC. Wire each circuit listed and test it, as you are instructed to do in the general instructions, and in the specific instructions that follow.

EXP. 9.1 Basic Logic Circuits

9.11 Logic pulser checkout. READ and follow the pulser description and operating instructions below before you start checking your logic circuits. Do not redraw the pulser diagrams in your report. Display on the Oscilloscope and sketch all pulser logic traces, in the manner described in the Appendix. Show your sketches to your instructor before you proceed.

74160 Circuit Pin Diagram

<table>
<thead>
<tr>
<th>Ripple Carry</th>
<th>(Q_a^2)</th>
<th>(Q_b^2)</th>
<th>(Q_c^2)</th>
<th>(Q_d^2)</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>2</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>3</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>5</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>6</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>7</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>8</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>9</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>3</td>
</tr>
</tbody>
</table>

74160 Sequence Logic Table

* Used for logic levels needed.
Ripple Carry pulse is given out at the start of the 0-9 sequence
The logic pulser is a simple circuit assembled from two ICs: a 7442B BCD-to-decimal decoder and a (important) 74160 synchronous decade counter. (BCD = Binary Coded Decimal.) When the pulser is clocked with a TTL-compatible square waveform, it provides:

1. A clock output, to be used as the Oscilloscope EXT TRIG NEG (external trigger, negative slope). With trigger properly adjusted, all OUTPUT pins (QA, QB, QC, QD of the 74160) will be seen going LOW at the left edge of the Oscilloscope trace.

2. Of the four BCD Outputs (QA, QB, QC, QD of the 74160), QA is the least significant BCD. The BCD outputs consecutively produce voltage levels (LOW = 0; HIGH = 1) corresponding to the BCD numbers, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, and 1001, which represent, respectively, the decimal numbers, 0 through 9 (see Table Above).

3. Ten decimal outputs (0-output pin through 9-output pin of the 7442B). Each decimal digit, in sequence, is represented by a low voltage level. When any digit is not selected, that output is held high. Thus, only one output is low at any one time.

Each output is capable of driving 10 TTL inputs, in parallel - or will sink up to 16-mA from a circuit that is at TTL LOW voltage level.

The pulser clock input can be the output pulse of a modified astable IC timer circuit (see EXP. 7 Timer Circuits), or a square waveform from a properly adjusted function generator.

With these many TTL-compatible outputs, the pulser is a valuable tool for providing sequenced and interrelated BCD and decimal inputs to logic circuits. Use of these will be described below.

Assembly of the Logic Pulser:
If provided unassembled, you can easily and quickly assemble a pulser, using the information given above. Both ICs will be encapsulated in N-type dual in-line packages, with pin numbers as shown below.

9.12 QUAD NAND gate 7400 checkout. See Figure 1 for IC Pin connections. Experimentally check all four NAND gates by observing the input and output Oscilloscope traces. Do not redraw this data sheet in your report. Report any discrepancy to your instructor. (A bad IC will cause you trouble later.)
9.12a. *Making Other Logic Gates from NAND Gate Combinations*

9.13 NOT gate (NOT \(A = A'\)), also called an inverter. Assemble and test a NOT gate from NAND Gates. Use the data sheet on NAND Gates (above) to check your circuit and determine the Truth Table.

Input A
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Output Q

Single NOT Gate from a NAND GATE
A connects to \(Q_A\)

\(\text{NOT (Inverter) GATE Symbol}\)

9.14 AND gate (A AND B = AB). Assemble and test an AND gate, and determine the Truth Table.

Input A
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Input B
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Output Q

Single NOT Gate from a NAND GATE
A connects to \(Q_A\), B connects to \(Q_B\)

\(\text{AND GATE Symbol}\)

9.15 OR gate (A OR B = A + B). Assemble and test an OR gate and determine the Truth Table.

Input A
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Input B
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Output Q

Single OR Gate from two NAND GATES
A connects to \(Q_A\), B connects to \(Q_B\)

\(\text{OR GATE Symbol}\)

9.16 NOR gate (NOT A OR B = (A + B)'). Assemble and test a NOR gate and determine the Truth Table.

Input A
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Input B
\(\bigcirc\)
\(\rightarrow\)
\(\bullet\)
Output Q

Single NOR Gate from three NAND GATES
A connects to \(Q_A\), B connects to \(Q_B\)

\(\text{NOR GATE Symbol}\)
The circle represents Inversion of Input

9.2 More complex logic circuits. Use of Boolean algebra in gate design.

9.21 XOR gate. EXCLUSIVE OR (A OR B BUT NOT BOTH = A \(\oplus\) B). Design and construct an XOR gate from NAND gates. Then assemble and test your circuit, to verify that it produces the XOR truth table. *It is possible to do this with only 4 NAND gates, but you may need 5 or 6 gates.*

Method:

(a) Prove the following Boolean equation [note carefully primes XOR GATE Symbol ("NOTS") and parentheses]:

\[[(A' + AB)(B' + AB)]' = A'B + AB' \]
(The right side of this equation is clearly XOR logic.)

(b) Using only NAND gates, draw the logic circuit that corresponds to the left-side of this equation.
(c) Simplify the circuit by eliminating such things as 2 inverters in series.
(d) Draw and use your final circuit.
(e) If time allows, try to devise a simplified circuit, using the Boolean algebra expression on the right side of the equation.

\[(A \text{ AND } B \text{ OR } C \text{ AND } D) \text{ INVERT} \]

9.22 AOI (AND-OR-INVERT = (AB+CD))' gate. Wire and test one gate of the dual 7450 IC. See Figure 6 for the IC pin connections.

Basic Logic of the AOI circuit with minimal GATES: Note: \(Q = (AB+CD)' \)

(a) Write the Boolean expression for the basic logic circuit (2 2-input AND gates, whose outputs go into a NOR gate. (4 inputs: A, B, C, D). Simplify this expression using-Boolean identities.
(b) Using your experimentally determined truth table, write the Boolean expression for it (see General instruction 2.1, above). Simplify this expression as much as possible.
(c) For each of these two simplified expressions, write the truth table. Verify that each agrees with the experimental truth table.

9.23 XOR gate using AOI and NAND gates. Design and test an XOR (\(Q = A \oplus B \)) circuit, using one AOI gate and one or more NAND gates.
Discussion of Flip-Flop Experiments

Introduction
This group of experiments is designed to lead the student from the simplest of flip-flops to the complex integrated circuit types. Flip-flop is a common name (fancy name is bi-stable multivibrator) for any circuit that can be in either of two voltage states, that are designated H or L (for the higher of two voltage states) and L or 0 (for the lower of the two voltage states). The two states can be associated with two logic states, TRUE and FALSE. Usually, TRUE is associated with the H voltage state, and FALSE is associated with the L voltage state. This is called positive circuit logic. If the voltage significance is reversed, FALSE = H and TRUE = L, it is called negative logic. (Often this negative-positive logic concept is in the mind of the circuit user rather than in the circuit design.)

The flip-flop is a "memory" circuit; it retains its H or L state until some external trigger (input voltage change) occurs, or power is lost to the circuit. A single flip-flop can represent only 1 binary digit. Even a small computer memory, therefore, must contain tens or hundreds of thousands of such circuits.

The H or L state is measured at an output terminal (designated Q). There frequently is a second output terminal that gives the complement of the first terminal (designated Q'). If Q = H then always Q' = L, and if Q = L then always Q' = H. As already has been noted, the change of state is triggered by a change of voltage at an input terminal, usually also of the same H and L type as is observed at the output terminal. Some circuits may have more than one input terminal, as we shall see below.

We have already worked with a circuit very similar to the bi-stable flip-flop, using the 555 timer IC. There, we tested a mono-stable circuit, which changed output state when triggered to do so, but then reverted back to the original state (the single stable state) after passage of a short time determined by an RC time constant. The 555 timer could have been connected so as to remain in either of two stable states until the circuit is triggered.

In the following discussions, we shall refer to H by binary 1, and L by binary 0. Also, remember that we are using primes to indicate logical NOT, rather than a bar over the symbol, due to printer limitations. Thus, A' means NOT A.

EXP. 9.3 Flip-Flops constructed from NAND gates.
EXP. 9.31 A simple Set-Reset flip-flop circuit, using two NAND gates. Wire and test the circuit and determine its truth table. Note that A=B=0 state is a bad state and is avoided.

![Flip Flop with NAND Gates](image)

Truth Table for the Simple Flip Flop

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q_1</td>
<td>Q'_1</td>
</tr>
</tbody>
</table>

Flip Flop with NAND Gates

Also do the following:

(a) Verify, on paper and by circuit test, that both inputs, A and B, can be in the 1 state simultaneously, with resulting Q = 1 and Q' = 0 OR Q = 0 and Q' = 1. (Note that the symmetry
of the circuit would predict this result.) Thus, if A = 1 and B = 1, then the output state is indeterminate.
(b) Verify, on paper and by circuit test, that indeterminate states of Q and Q' result if both inputs, A and B, are in the 0 state.
(c) Verify, on paper and by circuit test, that with A = 1 and B = 1 initially, that the outputs can be triggered to a new state only if the input to the NAND gate that initially has both of its inputs equal to 1 is brought to the 0 state. (Try to trigger both ways, by changing input pulse order, and observe the results.)
(d) Verify, on paper and by circuit test, that complementary inputs to A and B (A = 1 and B = 0, or A = 0 and B = 1) always result in definite output states.

EXP. 9.32 A Simple Switch Debouncer.
Study the Figure and verify that moving the toggle switch from either position to the other grounds the HIGH input and should result in triggering the state of the circuit without any "glitches" being caused by multiple make-and-break contacts at the input being grounded. (There is adequate clearance with the terminal which was previously grounded to prevent any additional grounding of that terminal during this process.)

Note that once the triggering has occurred, on first contact of the switch with ground, any separation of the ground contact from this input terminal has no effect on the output.

Wire the two resistors (Figure 8) into the flip-flop circuit (Figure 7). Simulate a switch with a grounded wire with an alligator clip on its free end. Observe both outputs, Q and Q', on your Oscilloscope while you move the alligator clip from one input terminal to the other, in order to verify the lack of glitches.

EXP 9.33 Reset Set Flip-Flop (RSFF) made from NAND gates. This circuit is made by adding to the earlier NAND Flip-Flop two NANDS, each wired as inverters. Wire and test this circuit.

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q,</td>
<td>Q'</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
</tbody>
</table>

Set-Reset Flip Flop with NAND Gates
EXP. 9.34 The Clocked RSFF. This circuit is an improvement over the un-clocked RSFF, just tested. The meaning of clocked is discussed in your textbook. Use the pulser QA output for the clock pulse. Wire and test the circuit. The truth table to be verified is below similar to the RS Flip Flop.

![Clocked RSFF Circuit Diagram]

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Indeterminate</td>
</tr>
</tbody>
</table>

Note that the truth table gives the Q, Q' outputs after the rising edge of the clock (†), i.e. this is a true edge-triggered Flip flop. Also, the clock controls this RS Flip flop by forcing the initial NAND gates to output HIGH states when it goes LOW. Only on the positive edge of the clock are the S and R inputs inverted and transferred to the second pair of gates. Q and Q’ are complementary (i.e. Q is the inverted of Q’) for all input conditions except S=1 and R=1 which is disallowed.

EXP. 9.4 J-K Flip-Flops (JKFF).

In these experiments, we use MSI (Medium Scale integrated circuit) 7473 IC, a dual (clocked) JKFF.

![7473 Pin Diagram]

9.41 Verification of truth table of the JKFF. Wire and test one of the dual JKFFs in the 7473 IC. (Use the pulser QA output pulse for your JK clock pulse.) The expected truth table follows:

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q_n'</td>
</tr>
</tbody>
</table>
Operation: The output (Q) values are assumed in the master flip-flop when the CLOCK pulse goes HIGH; the slave flip-flop assumes the master Q, Q' values when the CLOCK pulse ends (i.e., on the negative-going transition). This circuit.

9.42 A divide-by-4 circuit, and 2-bit binary counter.

Output is CLEARED when CLEAR is LOW, so CLEAR should be kept HIGH when operation is needed. Wire and test this circuit. At this time, wire the 2 LEDs, the 1kΩ pull-up resistor, and the 7450 IC to Q₀ and Q₁ to ground. The LEDs should toggle at half and a quarter of frequency F.

Verify from the JK truth table that each JKFF toggles on its clock pulse. (Note that the wiring insures that J = 1 and K = 1.) The input pulse is applied to the clock of the first JKFF.

(b) Verify that the final output pulse (Q of the second JKFF) makes transitions at 1/4th the frequency of the input pulse. These pulses can be asynchronous.

c) Verify that the two LEDs (ON = 1, OFF = 0) display the binary equivalents of decimal numbers, 0, 1, 2, 3, with the LED on the first JKFF being the LSD (Least Significant binary Digit). Use a OV-to-4V square -waveform, at 1Hz, to drive your JKFF circuits.

9.43 A divide-by-16 circuit, which also is a 4-bit binary counter. This is the above circuit doubled i.e using another 7473 with its input being the output TTL frequency F/4 and two more LEDs hooked up to Q₃ and Q₄. Wire and test this circuit. Verify that the output frequency of transitions is 1/16th that of the input pulse frequency, and that the 4 LEDs now form a 4-bit binary counter, representing the decimal numbers, 0, 1, 2, 3, 4, 5, 6, 7. Circuits of this type, with some kind of binary digit readout, are commonly called counters.